Nitric oxide effects on shortening velocity and power production in the rat diaphragm

J Appl Physiol (1985). 1996 Mar;80(3):1065-9. doi: 10.1152/jappl.1996.80.3.1065.

Abstract

The present experiments tested nitric oxide (NO) effects on shortening velocity and power production in maximally activated rat diaphragm. Diaphragm fiber bundles (n = 10/group) were incubated at 37 degrees C in Krebs-Ringer solution containing no added drug (control), the NO synthase inhibitor N omega-nitro-L-arginine (L-NNA; 10 mM), the NO donor sodium nitroprusside (SNP; 1 mM), or a combination (L-NNA + SNP) Loaded shortening velocity was measured via the load-clamp technique over a range of afterloads. Force-velocity data were fitted to the Hill equation to determine maximum velocity of shortening (Vmax). Unloaded shortening velocity was measured in control and L-NNA-treated bundles (n = 12/group) by using the slack test. Maximal isometric force and unloaded shortening velocity were not altered by L-NNA. In contrast, L-NNA decreased maximum velocity of shortening (P < 0.05), loaded shortening velocity (P < 0.0001), and power production (P < 0.0001). All L-NNA effects were prevented by coincubating fiber bundles with L-NNA + SNP. SNP alone had no effect on any variable. These data indicate that endogenous NO is essential for optimal myofilament function during active shortening.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arginine / pharmacology
  • Diaphragm / drug effects*
  • Kinetics
  • Male
  • Muscle, Skeletal / drug effects*
  • Nitric Oxide / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Time Factors

Substances

  • Nitric Oxide
  • Arginine