Gravity is a minor determinant of pulmonary blood flow distribution

J Appl Physiol (1985). 1991 Aug;71(2):620-9. doi: 10.1152/jappl.1991.71.2.620.

Abstract

Regional pulmonary blood flow in dogs under zone 3 conditions was measured in supine and prone postures to evaluate the linear gravitational model of perfusion distribution. Flow to regions of lung that were 1.9 cm3 in volume was determined by injection of radiolabeled microspheres in both postures. There was marked perfusion heterogeneity within isogravitational planes (coefficient of variation = 42.5%) as well as within gravitational planes (coefficient of variation = 44.2 and 39.2% in supine and prone postures, respectively; P = 0.02). On average, vertical height explained only 5.8 and 2.4% of the flow variability in the supine and prone postures, respectively. Whereas the gravitational model predicts that regional flows should be negatively correlated when measured in supine and prone postures, flows in the two postures were positively correlated, with an r2 of 0.708 +/- 0.050. Regional perfusion as a function of distance from the center of a lung explained 13.4 and 10.8% of the flow variability in the supine and prone postures, respectively. A linear combination of vertical height and radial distance from the centers of each lung provided a better-fitting model but still explained only 20.0 and 12.0% of the flow variability in the supine and prone postures, respectively. The entire lung was searched for a region of contiguous lung pieces (22.8 cm3) with high flow. Such a region was found in the dorsal area of the lower lobes in six of seven animals, and flow to this region was independent of posture. Under zone 3 conditions, neither gravity nor radial location is the principal determinant of regional perfusion distribution in supine and prone dogs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Dogs
  • Female
  • Gravitation*
  • Hemodynamics / physiology
  • Kidney / physiology
  • Lung / anatomy & histology
  • Lung / physiology
  • Male
  • Microspheres
  • Models, Biological
  • Perfusion
  • Prone Position
  • Pulmonary Circulation / physiology*
  • Pulmonary Gas Exchange
  • Renal Circulation / physiology
  • Supine Position