Skip to main content
Log in

Exercise and the Child Born Prematurely

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

With the increase in survival rates of children born prematurely, issues related to their active pursuits and responses to exercise have been gaining increasing attention. In some preterm children with an extremely low birthweight, bronchopulmonary dysplasia or cerebral palsy exercise capacity may be limited, especially in tasks requiring good neuromotor coordination. Deficiencies in aerobic and anaerobic performance, strength and coordination may even occur in children without overt manifestations of a neuromuscular or pulmonary disease. However, as a rule, children born prematurely may engage in physical activities and competitive sports without limitations. Exercise is safe in almost all such children as long as precautions are taken to avoid exercise-induced bronchoconstriction. However, to date there are no studies that have determined the efficacy of training. A wide variety of activities should be encouraged in all children born prematurely at an early age, to support the development of skills and to compensate for the possible effects of their premature birth on coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV

Similar content being viewed by others

References

  1. The Victorian Infant Collaborative Study Group. Improved outcome into the 1990s for infants weighing 500–999 g at birth. Arch Dis Child 1997; 77: F91-F94

    Google Scholar 

  2. Robertson CMT, Etches PC, Kyle JM. Eight-year school performance and growth of preterm, small for gestational age infants: a comparison study with subjects matched for birth weight or for gestational age. J Pediatr 1990; 116: 19–26

    Article  PubMed  CAS  Google Scholar 

  3. Herrgard E, Luoma L, Tuppurainen K, et al. Neurodevelopmental profile at five years of children born at ≤32 weeks gestation. Dev Med Child Neurol 1993; 35: 1083–96

    Article  PubMed  CAS  Google Scholar 

  4. Whitfield MF, Eckstein Grunau RV, Holsti L. Extremely premature (≤800 g) schoolchildren: multiple areas of hidden disability. Arch Dis Child 1997; 77: F85-F90

    Article  Google Scholar 

  5. Hack M, Taylor HG, Klein N, et al. School-age outcomes in children with birth weights under 750 g. N Engl J Med 1994; 331: 753–9

    Article  PubMed  CAS  Google Scholar 

  6. Goyen T-A, Lui K, Woods R. Visual-motor, visual perceptual, and fine motor outcomes in very-low-birthweight children at 5 years. Dev Med Child Neurol 1998; 40: 76–81

    Article  PubMed  CAS  Google Scholar 

  7. Marlow N, Roberts L, Cooke R. Outcome at 8 years for children with birth weights of 1250 g or less. Arch Dis Child 1993; 68: 286–90

    Article  PubMed  CAS  Google Scholar 

  8. Robertson CMT, Etches PC, Goldson E, et al. Eight-year school performance, neurodevelopmental, and growth outcome of neonates with bronchopulmonary dysplasia: a comparative study. Pediatrics 1992; 89: 365–72

    PubMed  CAS  Google Scholar 

  9. Smedler A-C, Faxelius G, Bremme K, et al. Psychological development in children born with very low birth weight after severe intrauterine growth retardation: a 10-year follow-up study. Acta Paediatr 1992; 81: 197–203

    Article  PubMed  CAS  Google Scholar 

  10. Tirosh E, Bar-Or O, Rosenbaum P. New muscle power test in neuromuscular disease: feasibility and reliability. Am J Dis Child 1990; 144: 1083–7

    PubMed  CAS  Google Scholar 

  11. Blayney M, Kerem E, Whyte H, et al. Bronchopulmonary dysplasia: improvement in lung function between 7 and 10 years of age. J Pediatr 1991; 118: 201–6

    Article  PubMed  CAS  Google Scholar 

  12. Northway WH, Moss RB, Carlisle KB, et al. Late pulmonary sequelae of bronchopulmonary dysplasia. N Engl J Med 1990; 323: 1793–9

    Article  PubMed  Google Scholar 

  13. Santuz P, Baraldi E, Zaramella P, et al. Factors limiting exercise performance in long-term survivors of bronchopulmonary dysplasia. Am J Respir Crit Care Med 1995; 152: 1284–9

    PubMed  CAS  Google Scholar 

  14. Van de Bor M, Verloove-Vanhorick SP, Brand R, et al. Patent ductus arteriosus in a cohort of 1338 preterm infants: a collaborative study. Paediatr Perinat Epidemiol 1988; 2: 328–36

    Article  PubMed  Google Scholar 

  15. Kitchen WH, Doyle LW, Ford GW, et al. Very low birth weight and growth to age 8 years. I: weight and height. Am J Dis Child 1992; 146: 40–5

    PubMed  CAS  Google Scholar 

  16. Ericson A, Källén B. Very low birthweight boys at the age of 19. Arch Dis Child Fetal Neonatal Ed 1998; 78: F171-F174

    Article  Google Scholar 

  17. Hutton JL, Pharoah POD, Cooke RWI, et al. Differential effects of preterm birth and small for gestational age on cognitive and motor development. Arch Dis Child 1997; 76: F75-F81

    Google Scholar 

  18. Schaap AHP, Wolf H, Bruinse HW, et al. Influence of obstetric management on outcome of extremely preterm growth retarded infants. Arch Dis Child 1999; 1997: F95-F99

    Google Scholar 

  19. Andréasson B, Lindroth M, Mortensson W, et al. Lung function eight years after neonatal ventilation. Arch Dis Child 1989; 64: 108–13

    Article  PubMed  Google Scholar 

  20. Coates AL, Bergsteinsson H, Desmond K, et al. Long-term pulmonary sequelae of premature birth with and without idiopathic respiratory distress syndrome. J Pediatr 1977; 90: 611–6

    Article  PubMed  CAS  Google Scholar 

  21. Galdes-Sebaldt M, Sheller JR, Grogaard J, et al. Prematurity is associated with abnormal airway function in childhood. Pediatr Pulmonol 1989; 7: 259–64

    Article  PubMed  CAS  Google Scholar 

  22. Hack M, Breslau N, Weissman B, et al. Effect of very low birth weight and subnormal head size on cognitive abilities at school age. N Engl J Med 1991; 325: 231–7

    Article  PubMed  CAS  Google Scholar 

  23. Roth SC, Baudin J, McCormick DC, et al. Relation between ultrasound appearance of the brain of very preterm infants and neurodevelopmental impairment at eight years. Dev Med Child Neurol 1993; 35: 755–68

    Article  PubMed  CAS  Google Scholar 

  24. Bader D, Ramos AD, Lew CD, et al. Childhood sequelae of infant lung disease: exercise and pulmonary function abnormalities after bronchopulmonary dysplasia. J Pediatr 1987; 110: 693–9

    Article  PubMed  CAS  Google Scholar 

  25. Baraldi E, Zanconato S, Zorzi C, et al. Exercise performance in very low birth weight children at the age of 7–12 years. Eur J Pediatr 1991; 150: 713–6

    Article  PubMed  CAS  Google Scholar 

  26. Hebestreit H, Hiermer A, Dietz S, et al. Leistungsfähigkeit von Frühgeborenen mit sehr niedrigem Geburtsgewicht im Alter von 6–12 Jahren [abstract]. Monatsschr Kinderheilkd 1997; 145 Suppl.: S108

    Google Scholar 

  27. Jacob SV, Lands LC, Coates AL, et al. Exercise ability in survivors of severe bronchopulmonary dysplasia. Exercise ability in survivors of severe bronchopulmonary dysplasia. Am J Respir Crit Care Med 1997; 155: 1925–9

    PubMed  CAS  Google Scholar 

  28. Pianosi PT, Fisk M. Cardiopulmonary exercise performance in prematurely born children. Pediatr Res 2000; 47: 653–8

    Article  PubMed  CAS  Google Scholar 

  29. Sabath RJ, Kilbride HW, Walsh VM, et al. Peak exercise capacity and pulmonary function of children born extremely preterm [abstract]. Pediatr Exerc Sci 1999; 11: 255–6

    Google Scholar 

  30. Heldt GP, McIlroy MB, Hansen TN, et al. Exercise performance of the survivors of hyaline membrane disease. J Pediatr 1980; 96: 995–9

    Article  PubMed  CAS  Google Scholar 

  31. Falk B, Eliakim A, Dotan R, et al. Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely. Med Sci Sports Exerc 1997; 29: 1124–30

    Article  PubMed  CAS  Google Scholar 

  32. Mitchell SH, Teague WG, with technical assistance of Robinson A. Reduced gas transfer at rest and during exercise in school-age survivors of bronchopulmonary dysplasia. Am J Respir Crit Care Med 1998; 157: 1406–12

    PubMed  CAS  Google Scholar 

  33. Nevill AM, Ramsbottom R, Williams C. Scaling physiological measurements for individuals of different body size. Eur J Appl Physiol 1992; 65: 110–7

    Article  CAS  Google Scholar 

  34. Tanner JM. Fallacy of per-weight and per-surface area standards, and their relation to spurious correlation. J Appl Physiol 1949; 2: 1–15

    PubMed  CAS  Google Scholar 

  35. Hebestreit H, Dietz S, Hiermer A, et al. Body coordination and mechanical efficiency in children born prematurely [abstract]. Pediatr Exerc Sci 1999; 11: 304

    Google Scholar 

  36. Rowland TW, Auchinachie JA, Keenan TJ, et al. Physiologic responses to treadmill running in adult and prepubertalmales. Int J Sports Med 1987; 8: 292–7

    Article  PubMed  CAS  Google Scholar 

  37. Unnithan VB, Eston RG. Stride frequency and submaximal treadmill running economy in adults and children. Pediatr Exerc Sci 1990; 2: 149–55

    Google Scholar 

  38. Rowland TW, Staab JS, Unnithan VB, et al. Mechanical efficiency during cycling in prepubertal and adult males. Int J Sports Med 1990; 11: 452–5

    Article  PubMed  CAS  Google Scholar 

  39. Unnithan VB, Dowling JJ, Frost G, et al. Role of cocontraction in the O2 cost of walking in children with cerebral palsy. Med Sci Sports Exerc 1996; 28: 1498–504

    Article  PubMed  CAS  Google Scholar 

  40. Bray OF, Shields WD, Wollcott GJ, et al. Occipitofrontal head circumference: an accurate measure of intracranial volume. J Pediatr 1969; 75: 303–5

    Article  PubMed  CAS  Google Scholar 

  41. Winick M. Malnutrition and brain development. J Pediatr 1969; 74: 667–79

    Article  PubMed  CAS  Google Scholar 

  42. Keller H, Ayub BV, Kriemler S, et al. Motorisches leistungsprofil 5–7 jähriger frühgeborener kinder mit einem geburtsgewicht von 500–1500 g. Dt Zeitschr Sportmed 1998; 49 Suppl. 1: 76–80

    Google Scholar 

  43. Keller H, Bar-Or O, Kriemler S, et al. Anaerobic performance in 5- to 7-yr-old children of low birthweight. Med Sci Sports Exerc 2000; 32: 278–83

    Article  PubMed  CAS  Google Scholar 

  44. Small E, Bar-Or O, van Mil E, et al. Muscle function of 11- to 17-year-old children of extremely low birthweight. Pediatr Exerc Sci 1998; 10: 327–36

    Google Scholar 

  45. Blimkie CJR, Roche P, Hay JT, et al. Anaerobic power of arms in teenage boys and girls: relationship to lean tissue. Eur J Appl Physiol 1988; 57: 677–83

    Article  CAS  Google Scholar 

  46. Keller H, Ayub BV, Saigal S, et al. Neuromotor ability in 5- to 7-year-old children with very low or extremely low birthweight. Dev Med Child Neurol 1998; 40: 661–6

    Article  PubMed  CAS  Google Scholar 

  47. Ahrens P, Zielen S, Stover B, et al. Pulmonary sequelae of longterm ventilation of very low birth weight premature infants: results of a follow-up study of 6-to-9-year-old children. Klin Padiatr 1991; 203: 366–71

    Article  PubMed  CAS  Google Scholar 

  48. Pelkonen AS, Hakulinen AL, Turpeinen M. Bronchial lability and responsiveness in school children born very preterm. Am J Respir Crit Care Med 1997; 156: 1178–84

    PubMed  CAS  Google Scholar 

  49. Speer CP, Silverman M. Issues relating to children born prematurely. Eur Respir J Suppl 1998; 27: 13S-6S

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Hebestreit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hebestreit, H., Bar-Or, O. Exercise and the Child Born Prematurely. Sports Med 31, 591–599 (2001). https://doi.org/10.2165/00007256-200131080-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-200131080-00004

Keywords

Navigation