Skip to main content
Log in

A Critical Review of the Fluoroquinolones

Focus on Respiratory Tract Infections

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The new fluoroquinolones (clinafloxacin, gatifloxacin, gemifloxacin, grepafloxacin, levofloxacin, moxifloxacin, sitafloxacin, sparfloxacin and trovafloxacin) offer excellent activity against Gram-negative bacilli and improved Gram-positive activity (e.g. against Streptococcus pneumoniae and Staphylococcus aureus) over ciprofloxacin. Ciprofloxacin still maintains the best in vitro activity against Pseudomonas aeruginosa. Clinafloxacin, gatifloxacin, moxifloxacin, sitafloxacin, sparfloxacin and trovafloxacin display improved activity against anaerobes (e.g. Bacteroides fragilis) versus ciprofloxacin. All of the new fluoroquinolones display excellent bioavailability and have longer serum half-lives than ciprofloxacin allowing for once daily dose administration.

Clinical trials comparing the new fluoroquinolones to each other or to standard therapy have demonstrated good efficacy in a variety of community-acquired respiratory infections (e.g. pneumonia, acute exacerbations of chronic bronchitis and acute sinusitis). Limited data suggest that the new fluoroquinolones as a class may lead to better outcomes in community-acquired pneumonia and acute exacerbations of chronic bronchitis versus comparators. Several of these agents have either been withdrawn from the market, had their use severely restricted because of adverse effects (clinafloxacin because of phototoxicity and hypoglycaemia; grepafloxacin because of prolongation of the QTc and resultant torsades de pointes; sparfloxacin because of phototoxicity; and trovafloxacin because of hepatotoxicity), or were discontinued during developmental phases. The remaining fluoroquinolones such as gatifloxacin, gemifloxacin, levofloxacin and moxifloxacin have adverse effect profiles similar to ciprofloxacin. Extensive post-marketing safety surveillance data (as are available with ciprofloxacin and levofloxacin) are required for all new fluoroquinolones before safety can be definitively established. Drug interactions are limited; however, all fluoroquinolones interact with metal ion containing drugs (eg. antacids).

The new fluoroquinolones (gatifloxacin, gemifloxacin, levofloxacin and moxifloxacin) offer several advantages over ciprofloxacin and are emerging as important therapeutic agents in the treatment of community-acquired respiratory infections. Their broad spectrum of activity which includes respiratory pathogens such as penicillin and macrolide resistant S. pneumoniae, favourable pharmacokinetic parameters, good bacteriological and clinical efficacy will lead to growing use of these agents in the treatment of community-acquired pneumonia, acute exacerbations of chronic bronchitis and acute sinusitis. These agents may result in cost savings especially in situations where, because of their potent broad-spectrum activity and excellent bioavailability, they may be used orally in place of intravenous antibacterials. Prudent use of the new fluoroquinolones will be required to minimise the development of resistance to these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX
Table X
Table XI
Table XII
Table XIII
Table XIV
Table XV

Similar content being viewed by others

References

  1. Lesher GY, Froelich EJ, Graett MD, et al. 1,8-Naphthyridine derivatives: a new class of chemotherapeutic agents. J Med Pharm Chem 1962: 5; 1063–65

    Article  CAS  Google Scholar 

  2. Cohen MA, Huband MD, Mailloux GB, et al. In vitro antibacterial activities of the fluoroquinolones PD 117596, PD 124816, and PD 127391. Diagn Microbiol Infect Dis 1991; 14(3): 245–58

    Article  CAS  PubMed  Google Scholar 

  3. Buchbinder M, Webb JC, Anderson L, et al. Laboratory studies and clinical pharmacology of nalidixic acid (WIN 18,320). Antimicrob Agents Chemother 1962; 6: 308–17

    Google Scholar 

  4. Blondeau JM. A review of the comparative in-vitro activities of 12 antimicrobial agents, with a focus on five new respiratory quinolones. J Antimicrob Chemother 1999; 43 Suppl B: 1–11

    Article  CAS  PubMed  Google Scholar 

  5. Neu HC. Chemical evolution of the fluoroquinolone antimicrobial agents. Am J Med 1989; 87 Suppl. 6C: 2S–9S

    CAS  PubMed  Google Scholar 

  6. Andriole VT. The future of the quinolones. Drugs 1993; 45 Suppl 3: 1–7

    Article  CAS  PubMed  Google Scholar 

  7. Koga H, Itoh A, Murayama S, et al. Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted l-alkyl-1,4-dihydro-4-oxoquinoline-3-carboxylic acids. J Med Chem 1980; 23(12): 1358–63

    Article  CAS  PubMed  Google Scholar 

  8. Davis R, Markham A, Balfour JA. Ciprofloxacin: an updated review of its pharmacology, therapeutic efficacy and tolerability. Drugs 1996; 51(6): 1019–74

    Article  CAS  PubMed  Google Scholar 

  9. Goldstein EJ. Possible role for the new fluoroquinolones (levofloxacin, grepafloxacin, trovafloxacin, clinafloxacin, sparfloxacin, and DU-6859a) in the treatment of anaerobic infections: review of current information on efficacy and safety. Clin Infect Dis 1996; 23 (1 Suppl.): S25–30

    Article  CAS  PubMed  Google Scholar 

  10. Weiss K, Laverdiere M, Restieri C. Comparative activity of trovafloxacin and Bay 12-8039 against 452 clinical isolates of Streptococcus pneumoniae. J Antimicrob Chemother 1998; 42(4): 523–5

    Article  CAS  PubMed  Google Scholar 

  11. Acar JF, Goldstein FW. Trends in bacterial resistance to fluoroquinolones. Clin Infect Dis 1997; 24 (1 Suppl.): S67–73

    Article  CAS  PubMed  Google Scholar 

  12. Dembry LM, Roberts JC, Schock KD, et al. Comparison of in vitro activity of trovafloxacin against gram-positive and gram-negative organisms with quinolones and beta-lactam antimicrobial agents. Diagn Microbiol Infect Dis 1998; 31(1): 301–11

    Article  CAS  PubMed  Google Scholar 

  13. Stein GE. Pharmacokinetics and pharmacodynamics of newer fluoroquinolones. Clin Infect Dis 1996; 23 (1 Suppl): S19–24

    Article  CAS  PubMed  Google Scholar 

  14. Wolfson JS, Hooper DC. Fluoroquinolone antimicrobial agents. Clin Microbiol Rev 1989; 2(4): 378–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Domagala JM. Structure-activity and structure-side-effect relationships for the quinolone antibacterials [published erratum appears in J Antimicrob Chemother 1994; 34 (5): 851]. J Antimicrob Chemother 1994; 33(4): 685–706

    Article  CAS  PubMed  Google Scholar 

  16. Zhanel GG, Walkty A, Vercaigne L, et al. The new fluoroquinolones: a critical review. Can J Infect Dis 1999; 10(3): 207–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhanel GG, Karlowsky JA, Palatnick L, et al. Prevalence of antimicrobial resistance in respiratory tract isolates of Streptococcus pneumoniae: results of a Canadian national surveillance study. The Canadian Respiratory Infection Study Group. Antimicrob Agents Chemother 1999; 43(10): 2504–9

    Article  CAS  Google Scholar 

  18. Zhanel GG, Karlowsky JA, Lowe DE, et al. Antibiotic resistance in respiratory tract isolates of Haemophilus influenzae and Moraxella catarrhalis collected from across Canada in 1997–1998. J Antimicrob Chemother 2000; 45(5): 655–62

    Article  CAS  PubMed  Google Scholar 

  19. Bartlett JG, Breiman RF, Mandell LA, et al. Community-acquired pneumonia in adults: guidelines for management. The Infectious Diseases Society of America. Clin Infect Dis 1998; 26(4): 811–38

    Article  CAS  Google Scholar 

  20. Bryskier A, Chantot JF. Classification and structure-activity relationships of fluoroquinolones. Drugs 1995; 49 Suppl 2: 16–28

    Article  CAS  PubMed  Google Scholar 

  21. Brighty KE, Gootz TD. The chemistry and biological profile of trovafloxacin. J Antimicrob Chemother 1997; 39 Suppl. B: 1–14

    Article  CAS  PubMed  Google Scholar 

  22. Davis R, Bryson HM. Levofloxacin: a review of its antibacterial activity, pharmacokinetics and therapeutic efficacy [published erratum appears in Drugs 1994; 48 (1): 132]. Drugs 1994; 47(4): 677–700

    Article  CAS  PubMed  Google Scholar 

  23. Cohen MA, Hubard MD, Gage JW, et al. In-vitro activity of clinafloxacin, trovafloxacin, and ciprofloxacin. J Antimicrob Chemother 1997; 40(2): 205–11

    Article  CAS  PubMed  Google Scholar 

  24. Dalhoff A, Petersen U, Endermann R. In vitro activity of BAY 12-8039, a new 8-methoxyquinolone. Chemotherapy 1996; 42(6): 410–25

    Article  CAS  PubMed  Google Scholar 

  25. Hosaka M, Kinoshita S, toyama A, et al. Antibacterial properties of AM-1155, anew 8-methoxy quinolone. J Antimicrob Chemother 1995; 36(2): 293–301

    Article  CAS  PubMed  Google Scholar 

  26. McCloskey L, Moore T, Niconovich N, et al. In vitro activity of gemifloxacin against a broad range of recent clinical isolates from the USA. J Antimicrob Chemother 2000 Apr; 45 Suppl. 1: 13–21

    Article  CAS  PubMed  Google Scholar 

  27. Marshall SA, Jones RN, Murray PR, et al. In-vitro comparison of DU-6859a, a novel fluoroquinolone, with other quinolones and oral cephalosporins tested against 5086 recent clinical isolates. J Antimicrob Chemother 1993; 32(6): 877–84

    Article  CAS  PubMed  Google Scholar 

  28. Goa KL, Bryson HM, Markham A. Sparfloxacin: a review of its antibacterial activity, pharmacokinetic properties, clinical efficacy and tolerability in lower respiratory tract infections. Drugs 1997; 53(4): 700–25

    Article  CAS  PubMed  Google Scholar 

  29. Wagstaff AJ, Balfour JA. Grepafloxacin. Drugs 1997; 53(5): 817–27

    Article  CAS  PubMed  Google Scholar 

  30. Kimura Y, Atarashi Y, Kawakami K, et al. (Fluorocyclopropyl) quinolones. 2. Synthesis and stereochemical structure-activity relationships of chiral 7-(7-amino-5-azaspiro[2.4]heptan-5-yl)-l-(2-fluorocyclopropyl) quinolone antibacterial agents. J Med Chem 1994; 37(20): 3344–52

    CAS  Google Scholar 

  31. Nightingale CH. Moxifloxacin, a new antibiotic designed to treat community-acquired respiratory tract infections: a review of microbiologic and pharmacokinetic-pharmacodynamic characteristics. Pharmacotherapy 2000; 20(3): 245–56

    Article  CAS  PubMed  Google Scholar 

  32. Zhao X, Xu C, Domagala J, et al. DNA topoisomerase targets of the fluoroquinolones: a strategy for avoiding bacterial resistance. Proc Natl Acad Sci 1997 Dec; 94: 13991–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao BY, Pine BY, Domagala J, et al. Fluoroquinolone action against clinical isolates of Mycobacterium tuberculosis: effects of a C-8 methoxyl group on survival in liquid media and in human macrophages. Antimicrob Agents Chemother 1999 Mar; 43(3): 661–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lu T, Zhao X, Drlica K. Gatifloxacin activity against quinolone-resistant gyrase: allele-specific enhancement of bacteriostatic and bactericidal activities by the C-8-methoxy group. Antimicrob Agents Chemother 1999; 43(12): 2969–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mizuki Y, Fujiwara I, Yamaguchi T. Pharmacokinetic interactions related to the chemical structures of fluoroquinolones. J Antimicrob Chemother 1996; 37 Suppl. A: 41–55

    Article  CAS  PubMed  Google Scholar 

  36. Hooper DC. Quinolone mode of action. Drugs 1995; 49 Suppl. 2: 10–5

    Article  CAS  PubMed  Google Scholar 

  37. Shen LL, Baranowski J, Pernet AG. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: specificity and cooperativity of drug binding to DNA. Biochemistry 1989; 28(9): 3879–85

    Article  CAS  PubMed  Google Scholar 

  38. Piddock LJ, Jim YF, Ricci V, et al. Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Esch-erichia coli. J Antimicrob Chemother 1999; 43(1): 61–70

    Article  CAS  PubMed  Google Scholar 

  39. Bryan LE, Bedard J, Wong S, et al. Quinolone antimicrobial agents: mechanism of action and resistance development. Clin Invest Med 1989; 12(1): 14–9

    CAS  PubMed  Google Scholar 

  40. Roblin D. The clinical development of quinolone antibacterials. Int J Pharm Med 1999; 13(2): 83–90

    Google Scholar 

  41. Hoshino K, Kitamura A, Morrissey I, et al. Comparison of inhibition of Escherichia coli topoisomerase IV by quinolones with DNA gyrase inhibition. Antimicrob Agents Chemother 1994; 38(11): 2623–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Peng H, Marians KJ. Escherichia coli topoisomerase IV: purification, characterization, subunit structure, and subunit interactions. J Biol Chem 1993; 268(32): 24481–90

    CAS  PubMed  Google Scholar 

  43. Saiki AY, Shen LL, Chen CN, et al. DNA cleavage activities of Staphylococcus aureus gyrase and topoisomerase IV stimulated by quinolones and 2-pyridones. Antimicrob Agents Chemother 1999; 43(7): 1574–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Geliert M. DNA topoisomerases. Ann Rev Biochem 1981; 50: 879–910

    Article  Google Scholar 

  45. Drlica K. Biology of bacterial deoxyribonucleic acid topoisomerases. Microbiol Rev 1984; 48(4): 273–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith JT, Lewin CS. Chemistry and mechanisms of action of the quinolone antibacterials, in the quinolones. Andiole VT, editor. London: Academic Press, 1988: 82

  47. Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N Engl J Med 1991; 324(6): 384–94

    Article  CAS  PubMed  Google Scholar 

  48. Yoshida H, Nakamura M, Bogaki M, et al. Mechanism of action of quinolones against Escherichia coli DNA gyrase. Anti-microb Agents Chemother 1993; 37(4): 839–45

    Article  CAS  Google Scholar 

  49. Kato J, Nishimura Y, Imamura R, et al. New topoisomerase essential for chromosome segregation in E. coli [published erratum appears in Cell 1991;65(7): 1289].Cell 1990; 63(2): 393–404

    CAS  Google Scholar 

  50. Blanche F, Cameron B, Bernard FX, et al. Differential behaviors of Staphylococcus aureus and Escherichia coli type II DNA topoisomerases. Antimicrob Agents Chemother 1996; 40(12): 2714–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tanaka M, Onodera M, Uchida Y, et al. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV purified from Staphylococcus aureus. Antimicrob Agents Chemother 1997; 41(11): 2362–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pan XS, Fisher LM. Streptococcus pneumoniae DNA gyrase and topoisomerase IV: overexpression, purification, and differential inhibition by fluoroquinolones. Antimicrob Agents Chemother 1999; 43(5): 1129–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Onodera Y, Uchida Y, Tanaka M, et al. Dual inhibitory activity of sitafloxacin (DU-6859a) against DNA gyrase and topoisomerase IV of Streptococcus pneumoniae. J Antimicrob Chemother 1999; 44(4): 533–6

    Article  CAS  PubMed  Google Scholar 

  54. Morrissey I, George JT. Purification of pneumococcal type II topoisomerases and inhibition by gemifloxacin and other quinolones. J Antimicrob Chemother 2000; 45 Suppl. 1: 101–6

    Article  CAS  PubMed  Google Scholar 

  55. Morrissey I, George J. Activities of fluoroquinolones against Streptococcus pneumoniae type II topoisomerases purified as recombinant proteins. Antimicrob Agents Chemother 1999; 43(11): 2579–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gootz TD, Zaniewski R, Haskell S, et al. Activity of the new fluoroquinolone trovafloxacin (CP-99,219) against DNA gyrase and topoisomerase IV mutants of Streptococcus pneumoniae selected in vitro. Antimicrob Agents Chemother 1996; 40(12): 2691–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fukuda H, Hiramatsu K. Primary targets of fluoroquinolones in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43(2): 410–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Heaton VJ, Ambler JE, Fisher LM. Potent antipneumococcal activity of gemifloxacin is associated wit dual targeting of gyrase and topoisomerase IV and in vivo target preference for gyrase and enhanced stabilization of cleavable complexes in vitro. Antimicrob Agents Chemother 2000; 44(11): 3112–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jorgensen JH, Weigel LM, Swenson JM, et al. Activities of clinafloxacin gatifloxacin gemifloxacin trovafloxacin against recent clinical isolates of levefloxacin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 2000; 44(11): 2962–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pestova E, Millichap JJ, Noskin GA, et al. Intracellular targets of moxifloxacin: a comparison with other fluoroquinolones. J Antimicrob Chemother 2000; 45(5): 583–90

    Article  CAS  PubMed  Google Scholar 

  61. Pan XS, Fishe LM. Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob Agents Chemother 1997; 41(2): 471–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alovero FL, Pan XS, Morris JE, et al. Engineering the specificity of antibacterial fluoroquinolones: benzenesulfonamide modifications at C-7 of ciprofloxacin change its primary target in Streptococcus pneumoniae from topoisomerase IV to gyrase. Antimicrob Agents Chemother 2000; 44(2): 320–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Piddock LJ. Mechanisms of resistance to fluoroquinolones: state-of-the-art 1992–1994. Drugs 1995; 49 Suppl. 2: 29–35

    Article  CAS  PubMed  Google Scholar 

  64. Sahm DF, Jones ME, Hickey ML, et al. Resistance surveillance of streptococcus pneumoniae, haemophilus influenzae and moraxella catarrhalis isolated in Asia and Europe, 1997–1998. J Antimicrob Chemother 2000; 45(4): 457–66

    Article  CAS  PubMed  Google Scholar 

  65. Chen DK, McGeer A, de Azavedo JC, et al. Decreased susceptibility of streptococcus pneumoniae to fluoroquinolones in Canada. N Engl J Med 1999; 341(4): 233–9

    Article  CAS  PubMed  Google Scholar 

  66. Ho PL, Que TL, Tsang DN, et al. Emergence of fluoroquinolone resistance among multiply resistant strains of Streptococcus pneumoniae in Hong Kong. Antimicrob Agents Chemother 1999; 43(5): 1310–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hsueh PR, Teng LJ, Lee LN, et al. Extremely high incidence of macrolide and trimethoprim-sulfamethoxazole resistance among clinical isolates of Streptococcus pneumoniae in Taiwan. J Clin Microbiol 1999; 37(4): 897–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Thornsberry C, Ogilvie P, Kahn J, et al. Surveillance of antimicrobial resistance in Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis in the United States in 1996–1997 respiratory season. The Laboratory Investigator Group. Diagn Microbiol Infect Dis 1997; 29(4): 249–57

    Article  CAS  PubMed  Google Scholar 

  69. Piddock LJ, Jin YF. Selection of quinolone-resistant mutants of Haemophilus influenzae and Streptococcus pneumoniae [letter]. J Antimicrob Chemother 1992; 30(1): 109–10

    Article  CAS  PubMed  Google Scholar 

  70. Pestova E, Beyer R, Cianciotto NP, et al. Contribution of topoisomerase IV and DNA gyrase mutations in Streptococcus pneumoniae to resistance to novel fluoroquinolones. Antimicrob Agents Chemother 1999; 43(8): 2000–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Davies TA, Pankuch GA, Dewasse BE, et al. In vitro development of resistance to five quinolones and amoxicillin-clavulanate in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43(5): 1177–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ferrandiz MJ, Fenoll A, Linares J, et al. Horizontal transfer of parC and gyrA in fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 2000; 44(4): 840–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jones ME, Sahm DF, Martin N, et al. Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from Worldwide Surveillance Studies during the 1997–1998 respiratory season. Antimicrob Agents Chemother 2000; 44(2): 462–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jorgensen JH, Weigel LM, Ferraro MJ, et al. Activities of newer fluoroquinolones against Streptococcus pneumoniae clinical isolates including those with mutations in the gyrA, parC, and parE loci. Antimicrob Agents Chemother 1999; 43(2): 329–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Janoir C, Zeller V, Kitzis MD, et al. High-level fluoroquinolone resistance in Streptococcus pneumoniae requires mutations in parC and gyrA. Antimicrob Agents Chemother 1996; 40(12): 2760–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Broskey J, Coleman K, Gwynn MN, et al. Efflux and target mutations as quinolone resistance mechanisms in clinical isolates of streptococcus pneumoniae. J Antimicrob Chemother 2000; 45 Suppl 1: 95–9

    Article  CAS  PubMed  Google Scholar 

  77. Taba H, Kusano N. Sparfloxacin resistance in clinical isolates of Streptococcus pneumoniae: involvement of multiple mutations in gyrA and parC genes. Antimicrob Agents Chemother 1998; 42(9): 2193–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Varon E, Janoir C, Kitzis MD, et al. ParC and GyrA may be interchangeable initial targets of some fluoroquinolones in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43(2): 302–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heaton VJ, Goldsmith CE, Ambler JE, et al. Activity of gemifloxacin against penicillin- and ciprofloxacin-resistant Streptococcus pneumoniae displaying topoisomerase- and efflux-mediated resistance mechanisms. Antimicrob Agents Chemother 1999; 43(12): 2998–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Perichon B, Tankovic J, Courvalin P. Characterization of a mutation in the parE gene that confers fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41(5): 1166–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brenwald NP, Gill MJ, Wise R. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42(8): 2032–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zeller V, Janoir C, Kitzis MD, et al. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41(9): 1973–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gill MJ, Brenwald NP, Wise R. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 1999; 43(1): 187–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baranova NN, Neyfakh AA. Apparent involvement of a multi-drug transporter in the fluoroquinolone resistance of Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41(6): 1396–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Beyer R, Pestove E, Millichap JJ, et al. A convenient assay for estimating the possible involvement of efflux of fluoro-quinolones by Streptococcus pneumoniae and Staphylococcus aureus: evidence for diminished moxifloxacin, sparfloxacin, and trovafloxacin efflux. Antimicrob Agents Chemother 2000; 44(3): 798–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Drlica K. A strategy for fighting antibiotic resistance. ASM News 2001; 67: 27–33

    Google Scholar 

  87. Blondeau JM, Zhao X, Hansen G, et al. A mutant prevention concentrations of fluoroquinolones for clinical isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 2001; 45(2): 433–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith HJ, Hoban DJ, Zhanel GG, et al. Molecular characterization and mutant prevention concentration (MPC) determination of single-step fluoroquinolone resistant mutants of S. pneumoniae. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy, 2001 Dec 15–19; Chicago (IL)

  89. Biedenbach DJ, Jones R, Dipersio J, et al. Fluoroquinolone resistance in H. influenzae (HFLU) and M. catarrhalis (MCAT): frequency of occurrence and strain characteristics in the SENTRY Antimicrobial Surveillance Program (1997–1999; North America) [posterno. 54]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy 1999 Sep 26–29; San Francisco (CA)

  90. Montanari MP, Prenna M, Mingoia M, et al. In vitro antibacterial activity of trovafloxacin and five other fluoroquinolones. Chemotherapy 1998; 44(2): 85–93

    Article  CAS  PubMed  Google Scholar 

  91. Mikamo H, Kawazoe K, Sato Y, et al. In vitro and in vivo antibacterial activities of AM-1155 in the fields of obstetrics and gynecology. Chemotherapy 1998; 44(4): 238–42

    Article  CAS  PubMed  Google Scholar 

  92. Montanari MP, Mingoia M, Marchetti F, et al. In vitro activity of levofloxacin against gram-positive bacteria. Chemotherapy 1999; 45(6): 411–7

    Article  CAS  PubMed  Google Scholar 

  93. Fung-Tomc J, Minassian B, Kolek B, et al. In vitro antibacterial spectrum of a new broad-spectrum 8-methoxy fluoroquinolone, gatifloxacin. J Antimicrob Chemother 2000; 45(4): 437–46

    Article  CAS  PubMed  Google Scholar 

  94. Hoogkamp-Korstanje JA, Roelofs-Willemse J. Comparative in vitro activity of moxifloxacin against Gram-positive clinical isolates. J Antimicrob Chemother 2000; 45(1): 31–9

    Article  CAS  PubMed  Google Scholar 

  95. Ling TK, Liu EY, Cheng AF. In vitro activity of trovafloxacin (CP99,219), a new fluoroquinolone against hospital isolates. Chemotherapy 1999; 45(1): 22–7

    Article  CAS  PubMed  Google Scholar 

  96. Wise R, Andrews JM. The in-vitro activity and tentative breakpoint of gemifloxacin, a new fluoroquinolone. J Antimicrob Chemother 1999; 44(5): 679–88

    Article  CAS  PubMed  Google Scholar 

  97. King A, May J, French G, et al. Comparative in vitro activity of gemifloxacin. J Antimicrob Chemother 2000; 45 Suppl. 1: 1–12

    Article  CAS  PubMed  Google Scholar 

  98. Ieven M, Goossens W, De Wit S, et al. In vitro activity of gemifloxacin compared with other antimicrobial agents against recent clinical isolates of streptococci. J Antimicrob Chemother 2000; 45 Suppl. 1: 51–3

    Article  CAS  PubMed  Google Scholar 

  99. Struwig MC, Botha PL, Chalkley LJ. In vitro activities of 15 antimicrobial agents against clinical isolates of South African enterococci. Antimicrob Agents Chemother 1998; 42(10): 2752–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Takahata M, Mitsuyama J, Yamashiro Y, et al. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob Agents Chemother 1999; 43(5): 1077–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kim JH, Kang JA, Lee Y, et al. Susceptibility of penicillin-susceptible and -resistant pneumococci to CFC-222, a new fluoroquinolone. J Antimicrob Chemother 1998; 42(4): 527–30

    Article  CAS  PubMed  Google Scholar 

  102. Jones RN, Pfaller MA, Doern GV, et al. Antimicrobial activity of gatifloxacin, a newer 8-methoxy fluoroquinolone, tested against over 23,000 recent clinical isolates from the SENTRY antimicrobial surveillance program, 1997 [poster]. 38th Inter-science Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  103. Martinez-Martinez L, Pascual A, Suarez AI, et al. In-vitro activity of levofloxacin, ofloxacin and D-ofloxacin against coryneform bacteria and Listeria monocytogenes. J Antimicrob Chemother 1999; 43 Suppl. C: 27–32

    Article  CAS  PubMed  Google Scholar 

  104. Milatovic D, Schmitz FJ, Brisse S, et al. In vitro activities of sitafloxacin (DU-6859a) and six other fluoroquinolones against 8,796 clinical bacterial isolates. Antimicrob Agents Chemother 2000; 44(4): 1102–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Odland BA, Jones RN, Verhoef J, et al. Antimicrobial activity of gatifloxacin (AM-1155, CG5501), and four other fluoroquinolones tested against 2,284 recent clinical strains of Streptococcus pneumoniae from Europe, Latin America, Canada, and the United States. The SENTRY Antimicrobial Surveillance Group (Americas and Europe). Diagn Microbiol Infect Dis 1999; 34(4): 315–20

    Article  CAS  PubMed  Google Scholar 

  106. Alcala L, Cercenado E, Garcia-Garrote F, et al. In vitro activity of the new quinolone moxifloxacin (Bay 12-8039) against resistant gram-positive clinical isolates. Diagn Microbiol Infect Dis 1999; 33(1): 27–31

    Article  CAS  PubMed  Google Scholar 

  107. Baddour LM, Smith EA. Multidrug resistance among Streptococcus pneumoniae isolated at a university hospital in eastern Tennessee. Clin Infect Dis 1999; 29(1): 224–5

    Article  CAS  PubMed  Google Scholar 

  108. Barry AL, Fuchs PC, Brown SD. Antibacterial activity of moxifloxacin (Bay 12-8039) against aerobic clinical isolates, and provisional criteria for disk susceptibility tests. Eur J Clin Microbiol Infect Dis 1999; 18(4): 305–9

    Article  CAS  PubMed  Google Scholar 

  109. Biedenbach DJ, Barrett MS, Croco MA, et al. BAY 12-8039, a novel fluoroquinolone: activity against important respiratory tract pathogens. Diagn Microbiol Infect Dis 1998; 32(1): 45–50

    Article  CAS  PubMed  Google Scholar 

  110. Buxbaum A, Straschil U, Moser C, et al. Comparative susceptibility to penicillin and quinolones of 1385 Streptococcus pneumoniae isolates. Austrian Bacterial Surveillance Network. J Antimicrob Chemother 1999; 43 Suppl. B: 13–8

    Article  CAS  PubMed  Google Scholar 

  111. Casellas JM, Gilardoni M, Tomc G, et al. Comparative in-vitro activity of levofloxacin against isolates of bacteria from adult patients with community-acquired lower respiratory tract infections. J Antimicrob Chemother 1999; 43 Suppl. C: 37–42

    Article  CAS  PubMed  Google Scholar 

  112. Pankuch GA, Hoellman DB, Jacobs MR, et al. Antipneumococcal activity of MEN 10700, a new penem, compared with other compounds, by MIC and time-kill kinetics. J Antimicrob Chemother 1999; 44(3): 381–4

    Article  CAS  PubMed  Google Scholar 

  113. Watanabe A, Tokue Y, Takahashi H, et al. In vitro activity of HSR-903, a new oral quinolone, against bacteria causing respiratory infections. Antimicrob Agents Chemother 1999; 43(7): 1767–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. von Eiff C, Peters G. Comparative in-vitro activities of moxifloxacin, trovafloxacin, quinupristin/dalfopristin and linezolid against staphylococci. J Antimicrob Chemother 1999; 43(4): 569–73

    Article  Google Scholar 

  115. Thomson KS, Chartrand SA, Sanders CC, et al. In-vitro activity of levofloxacin against Streptococcus pneumoniae with various levels of penicillin resistance. J Antimicrob Chemother 1999; 43 Suppl. C: 15–9

    Article  CAS  PubMed  Google Scholar 

  116. Verhaegen J, Verbist L. In-vitro activities of 16 non-beta-lactam antibiotics against penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae. J Antimicrob Chemother 1999; 43(4): 563–7

    Article  CAS  PubMed  Google Scholar 

  117. Hoellman DB, Lin G, Jacobs MR, et al. Anti-pneumococcal activity of gatifloxacin compared with other quinolone and non-quinolone agents. J Antimicrob Chemother 1999; 43(5): 645–9

    Article  CAS  PubMed  Google Scholar 

  118. Davies TA, Kelly LM, Pankuch GA, et al. Antipneumococcal activities of gemifloxacin compared to those of nine other agents. Antimicrob Agents Chemother 2000; 44(2): 304–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rittenhouse S, McCloskey L, Broskey J, et al. In vitro antibacterial activity of gemifloxacin and comparator compounds against common respiratory. J Antimicrob Chemother 2000; 45 Suppl. 1: 23–7

    Article  CAS  PubMed  Google Scholar 

  120. Reinert RR, et al. A comparative study of the in-vitro activity of levofloxacin against Streptococcus pneumoniae. J Antimicrob Chemother 1999; 43 Suppl. C: 5–8

    Article  CAS  PubMed  Google Scholar 

  121. Schmitz FJ, Verhoef J, Fluit AC. Comparative activity of 27 antimicrobial compounds against 698 Streptococcus pneumoniae isolates originating from 20 European university hospitals. SENTRY Participants Group. Eur J Clin Microbiol Infect Dis 1999; 18(6): 450–3

    Article  CAS  PubMed  Google Scholar 

  122. Reinert RR, Schlaeger JJ, Lutticken R. Moxifloxacin: a comparison with other antimicrobial agents of in-vitro activity against Streptococcus pneumoniae. J Antimicrob Chemother 1998; 42(6): 803–6

    Article  CAS  PubMed  Google Scholar 

  123. Torres-Viera C, Wennersten C, Moeltering Jr RC, et al. Comparative in vitro activity of gatifloxacin, a new fluoroquinolone antimicrobial, against gram-positive bacteria [poster]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  124. Johnson DM, Jones RN, Erwin ME. Anti-streptococcal activity of SB-265805 (LB20304), anovel fluoronaphthyridone, compared with five other compounds, including quality control guidelines. Diagn Microbiol Infect Dis 1999; 33(2): 87–91

    Article  CAS  PubMed  Google Scholar 

  125. Pong A, Thomson KS, Moland ES, et al. Activity of moxifloxacin against pathogens with decreased susceptibility to ciprofloxacin. J Antimicrob Chemother 1999; 44(5): 621–7

    Article  CAS  PubMed  Google Scholar 

  126. Thornsberry C, Ogilvie PT, Holley Jr HP, et al. Survey of susceptibilities of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis isolates to 26 antimicrobial agents: a prospective US study. Antimicrob Agents Chemother 1999; 43(11): 2612–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wootton M, Bowker KE, Janowska A, et al. In-vitro activity of HMR 3647 against Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis and beta-haemolytic streptococci. J Antimicrob Chemother 1999; 44(4): 445–53

    Article  CAS  PubMed  Google Scholar 

  128. Niki Y, Yamashita Y, Otoh H, et al. In vitro activities of sitafloxacin (DU-6859a) against major pathogens of community-acquired pneumonia. Kurashiki, Japan: Kawasaki Medical School, 1999

    Google Scholar 

  129. Keller N, Smollen G, Davidson Y, et al. The susceptibility of Streptococcus pneumoniae to levofloxacin and other antibiotics. J Antimicrob Chemother 1999; 43 Suppl. C: 1–3

    Article  CAS  PubMed  Google Scholar 

  130. Thomson KS, Sanders CC. The effects of increasing levels of quinolone resistance on in-vitro activity of four quinolones. J Antimicrob Chemother 1998; 42(2): 179–87

    Article  CAS  PubMed  Google Scholar 

  131. Malathum K, Singh KV, Murray BE. In vitro activity of moxifloxacin, a new 8-methoxyquinolone, against gram-positive bacteria. Diagn Microbiol Infect Dis 1999; 35(2): 127–33

    Article  CAS  PubMed  Google Scholar 

  132. Hardy D, Amsterdam D, Mandell LA, et al. Comparative in vitro activities of ciprofloxacin, gemifloxacin, grepafloxacin, moxifloxacin, ofloxacin, sparfloxacin, trovafloxacin, and other antimicrobial agents against bloodstream isolates of gram-positive cocci. Antimicrob Agents Chemother 2000; 44(3): 802–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Diekema DJ, Jones RN, Rolston KV. Antimicrobial activity of gatifloxacin compared to seven other compounds tested against gram-positive organisms isolated at 10 cancer-treatment centers. Diagn Microbiol Infect Dis 1999; 34(1): 37–43

    Article  CAS  PubMed  Google Scholar 

  134. Deshpande LM, Diekema DJ, Jones RN. Comparative activity of clinafloxacin and nine other compounds tested against 2000 contemporary clinical isolates from patients in United States hospitals. Diagn Microbiol Infect Dis 1999; 35(1): 81–8

    Article  CAS  PubMed  Google Scholar 

  135. Fuchs PC, Barry AL, Brown SD. In vitro activities of clinafloxacin against contemporary clinical bacterial isolates from 10 North American centers. Antimicrob Agents Chemother 1998; 42(5): 1274–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Fremaux A, Sissia G, Geslin P. In-vitro bacteriostatic activity of levofloxacin and three other fluoroquinolones against penicillin-susceptible and penicillin-resistant Streptococcus pneumoniae. J Antimicrob Chemother 1999; 43 Suppl C: 9–14

    Article  CAS  PubMed  Google Scholar 

  137. Hoban DJ, Zhanel GG, Karlowsky JA. In vitro activity of the novel ketolide HMR 3647 and comparative oral antibiotics against Canadian respiratory tract isolates of Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis. Diagn Microbiol Infect Dis 1999; 35(1): 37–44

    Article  CAS  PubMed  Google Scholar 

  138. Tomizawa H, Tateda K, Miyazaki S, et al. Antibacterial activity of AM-1155 against penicillin-resistant Streptococcus pneumoniae. J Antimicrob Chemother 1998; 41(1): 103–6

    Article  CAS  PubMed  Google Scholar 

  139. Martinez-Martinez L, Joyanes P, Suarez AI, et al. Activity of gemifloxacin against clinical isolates of Listeria monocytogenes and Coryneform bacteria [poster 1504]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  140. Jones RN, Pfaller MA, Doern GV. Comparative antimicrobial activity of trovafloxacin tested against 3049 Streptococcus pneumoniae isolates from the 1997–1998 respiratory infection season. Diagn Microbiol Infect Dis 1998; 32(2): 119–26

    Article  CAS  PubMed  Google Scholar 

  141. Giamarellos-Bourboulis EJ, Sambatakou H, Grecka P, et al. In vitro activity of quinupristin/dalfopristin and newer quinolones combined with gentamicin against resistant isolates of Enterococcus faecalis and Enterococcus faecium. Eur J Clin Microbiol Infect Dis 1998; 17(9): 657–61

    CAS  PubMed  Google Scholar 

  142. Woodcock JM, Andrews JM, Boswell FJ, et al. In vitro activity of BAY 12-8039, a new fluoroquinolone. Antimicrob Agents Chemother 1997; 41(1): 101–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Fass RJ. In vitro activity of Bay 12-8039, a new 8-methoxyquinolone. Antimicrob Agents Chemother 1997; 41(8): 1818–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hoogkamp-Korstanje JA. In-vitro activities of ciprofloxacin, levofloxacin, lomefloxacin, ofloxacin, pefloxacin, sparfloxacin and trovafloxacin against gram-positive and gram-negative pathogens from respiratory tract infections. J Antimicrob Chemother 1997; 40(3): 427–31

    Article  CAS  PubMed  Google Scholar 

  145. Rolston KV, Ho DH, LeBlanc B, et al. In-vitro activity of trovafloxacin against clinical bacterial isolates from patients with cancer. J Antimicrob Chemother 1997; 39 Suppl. B: 15–22

    Article  CAS  PubMed  Google Scholar 

  146. Fuchs PC, Barry AL, Brown SD. In vitro activity of trovafloxacin against ciprofloxacin-susceptible and -resistant clinical bacterial isolates and assessment of the trovafloxacin disk test. Diagn Microbiol Infect Dis 1999; 33(1): 33–8

    Article  CAS  PubMed  Google Scholar 

  147. Felmingham D, Robbins MJ, Ingley K, et al. In-vitro activity of trovafloxacin, a new fluoroquinolone, against recent clinical isolates. J Antimicrob Chemother 1997; 39 Suppl. B: 43–9

    Article  CAS  PubMed  Google Scholar 

  148. Traub WH, Leonhard B. Susceptibility of Moraxella catarrhalis to 21 antimicrobial drugs: validity of current NCCLS criteria for the interpretation of agar disk diffusion antibiograms. Chemotherapy 1997; 43(3): 159–67

    Article  CAS  PubMed  Google Scholar 

  149. Isenberg HD, Alperstein P, France K. In vitro activity of ciprofloxacin, levofloxacin, and trovafloxacin, alone and in combination with beta-lactams, against clinical isolates of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Burkholderia cepacia. Diagn Microbiol Infect Dis 1999; 33(2): 81–6

    Article  CAS  PubMed  Google Scholar 

  150. Valdezate S, Vindel A, Baquero F, et al. Comparative in vitro activity of quinolones against Stenotrophomonas maltophilia. EurJ Clin Microbiol Infect Dis 1999; 18(12): 908–11

    Article  CAS  Google Scholar 

  151. Jones RN, Biedenbach DJ, Erwin ME, et al. Activity of gatifloxacin against Haemophilus influenzae and Moraxella catarrhalis, including susceptibility test development, E-test comparisons, and quality control guidelines for H. influenzae. J Clin Microbiol 1999; 37(6): 1999–2002

    Article  CAS  PubMed  Google Scholar 

  152. Barrett MS, Jones RN. Timed kill kinetic studies of levofloxacin, ofloxacin, and ciprofloxacin against Moraxella catarrhalis. Diagn Microbiol Infect Dis 1998; 30(2): 135–7

    Article  CAS  PubMed  Google Scholar 

  153. Biedenbach DJ, Croco MA, Barrett TJ, et al. Comparative in vitro activity of gatifloxacin against Stenotrophomonas maltophilia and Burkholderia species isolates including evaluation of disk diffusion and E test methods. Eur J Clin Microbiol Infect Dis 1999; 18(6): 428–31

    Article  CAS  PubMed  Google Scholar 

  154. Visalli MA, Jacobs MR, Appelbaum PC. Activities of three quinolones, alone and in combination with extended-spectrum cephalosporins or gentamicin, against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 1998; 42(8): 2002–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gales AC, Jones RN, Gordon KA, et al. Activity and spectrum of 22 antimicrobial agents tested against urinary tract infection pathogens in hospitalized patients in Latin America: report from the second year of the SENTRY antimicrobial surveillance program (1998). J Antimicrob Chemother 2000; 45(3): 295–303

    Article  CAS  PubMed  Google Scholar 

  156. Weiss K, Restieri C, De Carolis E, et al. Comparative activity of new quinolones against 326 clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 2000; 45(3): 363–5

    Article  CAS  PubMed  Google Scholar 

  157. Saez-Nieto JA, Vazquez JA. In vitro activities of ketolides HMR 3647 [correction of HRM 3647] and HMR 3004 [correction of HRM 3004], levofloxacin, and other quinolones and macrolides against Neisseria spp. and Moraxella catarrhalis [published erratum appears in Antimicrob Agents Chemother 1999; 43 (12): 3046]. Antimicrob Agents Chemother 1999; 43(4): 983–4

    CAS  Google Scholar 

  158. Biedenbach DJ, Beach ML, Jones RN. Antimicrobial activity of gatifloxacin tested against Neisseria gonorrhoeae using three methods and a collection of fluoroquinolone-resistant strains. Diagn Microbiol Infect Dis 1998; 32(4): 307–11

    Article  CAS  PubMed  Google Scholar 

  159. Kitzis MD, Goldstein FW, Miegi M, et al. In-vitro activity of levofloxacin, a new fluoroquinolone: evaluation against Haemophilus influenzae and Moraxella catarrhalis. J Antimicrob Chemother 1999; 43 Suppl. C: 21–6

    Article  CAS  PubMed  Google Scholar 

  160. Segatore B, Setacci D, Perilli M, et al. Italian survey on comparative levofloxacin susceptibility in 334 clinical isolates of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1999; 43(2): 428–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Diekema DJ, Pfaller MA, Jones RN, et al. Survey of bloodstream infections due to gram-negative bacilli: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, and Latin America for the SENTRY Antimicrobial Surveillance Program, 1997. Clin Infect Dis 1999; 29(3): 595–607

    Article  CAS  PubMed  Google Scholar 

  162. Goldstein EJ, Citron DM, Merriam CV, et al. Activity of gatifloxacin compared to those of five other quinolones versus aerobic and anaerobic isolates from skin and soft tissue samples of human and animal bite wound infections. Antimicrob Agents Chemother 1999; 43(6): 1475–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Davies TA, Kelly LM, Hoellman DB, et al. Activities and postantibiotic effects of gemifloxacin compared to those of 11 other agents against Haemophilus influenzae and Moraxella catarrhalis. Antimicrob Agents Chemother 2000; 44(3): 633–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sader HS, Jones RN, Gales AC, et al. Antimicrobial susceptibility patterns for pathogens isolated from patients in Latin American medical centers with a diagnosis of pneumonia: analysis of results from the SENTRY Antimicrobial Surveillance Program (1997). SENTRYLatin AmericaStudy Group. Diagn Microbiol Infect Dis 1998; 32(4): 289–301

    Article  CAS  PubMed  Google Scholar 

  165. Cormican MG, Jones RN. Antimicrobial activity and spectrum of LB20304, a novel fluoronaphthyridone. Antimicrob Agents Chemother 1997; 41(1): 204–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lu DC, Chang SC, Chen YC, et al. In vitro activities of antimicrobial agents, alone and in combinations, against Burkholderia cepacia isolated from blood. Diagn Microbiol Infect Dis 1997; 28(4): 187–91

    Article  CAS  PubMed  Google Scholar 

  167. Visalli MA, Bajaksouzian S, Jacobs MR, et al. Comparative activity of trovafloxacin, alone and in combination with other agents, against gram-negative nonfermentative rods. Antimicrob Agents Chemother 1997; 41(7): 1475–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Verhaegen J, Verbist L. In vitro activity of gemifloxacin and other antimicrobials against recent isolates of Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Burkholderia cepacia and Acinetobacter spp. [poster 2306]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  169. Makino M, Miyazaki S, Oharo A, et al. In vitro antibacterial activity of gemifloxacin (SB-265805) against common respiratory tract pathogens and urinary tract pathogens isolated in Japan [poster 2302]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  170. Marco F, Jones RN, Hoban DJ, et al. In-vitro activity of OPC-17116 against more than 6000 consecutive clinical isolates: a multicentre international study. J Antimicrob Chemother 1994; 33(3): 647–54

    Article  CAS  PubMed  Google Scholar 

  171. Sader HS, Erwin ME, Jones RN. In vitro activity of OPC-17116 compared to other broad-spectrum fluoroquinolones. Eur J Clin Microbiol Infect Dis 1992; 11(4): 372–81

    Article  CAS  PubMed  Google Scholar 

  172. Wise R, Andrews JM. The activity of grepafloxacin against respiratory pathogens in the UK. J Antimicrob Chemother 1997; 40 Suppl. A: 27–30

    Article  CAS  PubMed  Google Scholar 

  173. Takahashi Y, Masuda N, Otsuki M, et al. In vitro activity of HSR-903, a new quinolone. Antimicrob Agents Chemother 1997; 41(6): 1326–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wexler HM, Molitoris E, Molitoris D, et al. In vitro activity of levofloxacin against a selected group of anaerobic bacteria isolated from skin and soft tissue infections. Antimicrob Agents Chemother 1998; 42(4): 984–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Ackermann G, Schaumann R, Pless B, et al. Comparative activity of moxifloxacin in vitro against obligately anaerobic bacteria. Eur J Clin Microbiol Infect Dis 2000; 19(3): 228–32

    Article  CAS  PubMed  Google Scholar 

  176. Schaumann R, Ackermann G, Pless B, et al. In vitro activities of gatifloxacin, two other quinolones, and five nonquinolone antimicrobials against obligately anaerobic bacteria. Antimicrob Agents Chemother 1999; 43(11): 2783–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Ednie LM, Jacobs MR, Appelbaum PC. Activities of gatifloxacin compared to those of seven other agents against anaerobic organisms. Antimicrob Agents Chemother 1998; 42(9): 2459–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Goldstein EJ, Citron DM, Hudspeth M, et al. Trovafloxacin compared with levofloxacin, ofloxacin, ciprofloxacin, azithromycin and clarithromycin against unusual aerobic and anaerobic human and animal bite-wound pathogens. J Antimicrob Chemother 1998; 41(3): 391–6

    Article  CAS  PubMed  Google Scholar 

  179. Goldstein EJ, Citron Dm, Warren Y, et al. In vitro activity of gemifloxacin (SB 265805) against anaerobes. Antimicrob Agents Chemother 1999; 43(9): 2231–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Goldstein EJ, Citron DM, Merriam CV, et al. Activities of gemifloxacin (SB 265805, LB20304) compared to those of other oral antimicrobial agents against unusual anaerobes. Antimicrob Agents Chemother 1999; 43(11): 2726–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Edlund C, Sabouri S, Nord CE. Comparative in vitro activity of BAY 12-8039 and five other antimicrobial agents against anaerobic bacteria. Eur J Clin Microbiol Infect Dis 1998; 17(3): 193–5

    Article  CAS  PubMed  Google Scholar 

  182. Betriu C, Gomez M, Palau ML, et al. Activities of new antimicrobial agents (trovafloxacin, moxifloxacin, sanfetrinem, and quinupristin-dalfopristin) against Bacteroides fragilis group: comparison with the activities of 14 other agents. Antimicrob Agents Chemother 1999; 43(9): 2320–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Aldridge KE, Ashcraft DS. Comparison of the in vitro activities of Bay 12-8039, a new quinolone, and other antimicrobials against clinically important anaerobes. Antimicrob Agents Chemother 1997; 41(3): 709–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kato N, Tanaka K, Kato H, et al. In vitro activity of R-95867, the active metabolite of a new oral carbapenem, CS-834, against anaerobic bacteria. J Antimicrob Chemother 2000; 45(3): 357–61

    Article  CAS  PubMed  Google Scholar 

  185. Goldstein EJ, Citron DM, Hunt Gerardo S, et al. Comparative in vitro activities of DU-6859a, levofloxacin, ofloxacin, sparfloxacin, and ciprofloxacin against 387 aerobic and anaerobic bite wound isolates. Antimicrob Agents Chemother 1997; 41(5): 1193–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Goldstein EJ, Citron DM, Perriam CV, et al. Activities of telithromycin (HMR 3647, RU 66647) compared to those of erythromycin, azithromycin, clarithromycin, roxithromycin, and other antimicrobial agents against unusual anaerobes. Antimicrob Agents Chemother 1999; 43(11): 2801–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ullmann U, Schubert S, Krausse R. Comparative in-vitro activity of levofloxacin, other fluoroquinolones, doxycycline and erythromycin against Ureaplasma urealyticum and Mycoplasma hominis. J Antimicrob Chemother 1999; 43 Suppl. C: 33–6

    Article  CAS  PubMed  Google Scholar 

  188. Nielsen K, Bangsborg JM, Hoiby N. Susceptibility of Legionella species to five antibiotics and development of resistance by exposure to erythromycin, ciprofloxacin, and rifampicin. Diagn Microbiol Infect Dis 2000; 36(1): 43–8

    Article  CAS  PubMed  Google Scholar 

  189. Bebear CM, Renaudin H, Schaeverbeke T, et al. In-vitro activity of grepafloxacin, a new fluoroquinolone, against mycoplasmas. J Antimicrob Chemother 1999; 43(5): 711–4

    Article  CAS  PubMed  Google Scholar 

  190. Dubois J, St-Pierre C. In vitro activity of gatifloxacin, compared with ciprofloxacin, clarithromycin, erythromycin, and rifampin, against Legionella species. Diagn Microbiol Infect Dis 1999; 33(4): 261–5

    Article  CAS  PubMed  Google Scholar 

  191. Dubois J, St-Pierre C. Comparative in vitro activity and post-antibiotic effect of gemifloxacin against Legionella spp. J Antimicrob Chemother 2000; 45 Suppl. 1: 41–6

    Article  CAS  PubMed  Google Scholar 

  192. Miyashita N, Niki Y, Kishimoto T, et al. In vitro and in vivo activities of AM-1155, a new fluoroquinolone, against Chlamydia spp. Antimicrob Agents Chemother 1997; 41(6): 1331–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Cohen MA, Huband MD. In-vitro susceptibilities of Mycoplasma pneumoniae, Mycoplasma hominis and Ureaplasma urealyticum to clinafloxacin, PD 131628, ciprofloxacin and comparator drugs [letter]. J Antimicrob Chemother 1997; 40(2): 308–9

    Article  CAS  PubMed  Google Scholar 

  194. Roblin PM, Hammerschlag MR. In-vitro activity of gatifloxacin against Chlamydia trachomatis and Chlamydia pneumoniae. J Antimicrob Chemother 1999; 44(4): 549–51

    Article  CAS  PubMed  Google Scholar 

  195. Roblin PM, Reznik T, Kutlin A, et al. In vitro activities of gemifloxacin (SB 265805, LB20304) against recent clinical isolates of Chlamydia pneumoniae. Antimicrob Agents Chemother 1999; 43(11): 2806–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Duffy LB, Crabb D, Searcey K, et al. Comparative potency of gemifloxacin, new quinolones, macrolides, tetracycline and clindamycin against Mycoplasma spp. J Antimicrob Chemother 2000; 45 Suppl 1: 29–33

    Article  CAS  PubMed  Google Scholar 

  197. Ridgway GL, Salman H, Robbins MJ, et al. The in-vitro activity of grepafloxacin against Chlamydia spp., Mycoplasma spp., Ureaplasma urealyticum and Legionella spp. J Antimicrob Chemother 1997; 40 Suppl. A: 31–4

    Article  CAS  PubMed  Google Scholar 

  198. Donati M, Rodriguez Fermepin M, Olma A, et al. Comparative in-vitro activity of moxifloxacin, minocycline and azithromycin against Chlamydia spp. J Antimicrob Chemother 1999; 43(6): 825–7

    Article  CAS  PubMed  Google Scholar 

  199. Roblin PM, Hammerschlag MR. In vitro activity of a new 8-methoxyquinolone, BAY 12-8039, against Chlamydia pneumoniae. Antimicrob Agents Chemother 1998; 42(4): 951–2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bebear CM, Renaudin H, Boudjadja A, et al. In vitro activity of BAY 12-8039, a new fluoroquinolone against mycoplasmas. Antimicrob Agents Chemother 1998; 42(3): 703–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Roblin PM, Kutlin A, Hammerschlag MR. In vitro activity of trovafloxacin against Chlamydia pneumoniae. Antimicrob Agents Chemother 1997; 41(9): 2033–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. National Committee for Clinical Laboratory Standards (NCCLS). Performance standards for antimicrobial susceptibility testing: Polgar PE, editor. 10th informational supplement. NCCLS: Pennsylvania, 2000

    Google Scholar 

  203. Naber KG, Theuretzbacher U, Moneva-Koucheva G, et al. Urinary excretion and bactericidal activity of intravenous ciprofloxacin compared with oral ciprofloxacin. Eur J Clin Microbiol Infect Dis 1999; 18(11): 783–9

    Article  CAS  PubMed  Google Scholar 

  204. Schuler P, Zemper K, Boraer K, et al. Penetration of sparf-loxacin and ciprofloxacin into alveolar macrophages, epithelial lining fluid, and polymorphonuclear leucocytes. Eur RespirJ 1997; 10(5): 1130–6

    Article  CAS  Google Scholar 

  205. Compendium of Pharmaceuticals and Specialties. 35th ed. Ottawa: Canadian Pharmacists Association, 2000

  206. Vance-Bryan K, Guay DR, Rotschafer JC. Clinical pharmaco-kinetics of ciprofloxacin. Clin Pharmacokinet 1990; 19(6): 434–61

    Article  CAS  PubMed  Google Scholar 

  207. Bron NJ, Dorr MB, Mant TG, et al. The tolerance and pharma-cokinetics of clinafloxacin (CI-960) in healthy subjects. J Antimicrob Chemother 1996; 38(6): 1023–9

    Article  CAS  PubMed  Google Scholar 

  208. Wise R, Jones S, Das I, et al. Pharmacokinetics and inflammatory fluid penetration of clinafloxacin. Antimicrob Agents Chemother 1998; 42(2): 428–30

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Randinitis EJ, Brodfuehrer J, Vassos AB. Pharmacokinetics of clinafloxacin following oral and intravenous single and multiple dosing in volunteers [abstract]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27;. San Diego (CA)

  210. Randinitis EJ, Koup JR, Rausch G, et al. Single-dose clinafloxacin pharmacokinetics in subjects with various degrees of renal function [abstract]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  211. Wise R, Ashby JP, Andrews JM. In vitro activity of PD 127,391, an enhanced-spectrum quinolone. Antimicrob Agents Chemother 1988; 32(8): 1251–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Nakashima M, Uematsu T, Kosuge K, et al. Single- and multiple-dose pharmacokinetics of AM-1155, a new 6-fluoro-8-methoxy quinolone, in humans. Antimicrob Agents Chemother 1995; 39(12): 2635–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Wise R, Andrews JM, Ashby JP, et al. A study to determine the pharmacokinetics and inflammatory fluid penetration of gatifloxacin following a single oral dose. J Antimicrob Chemother 1999; 44(5): 701–4

    Article  CAS  PubMed  Google Scholar 

  214. LaCreta FP, Kaul S, Kollia GD, et al. Interchangeability of 400-mg intravenous and oral gatifloxacin in healthy adults. Pharmacotherapy 2000; 20 (6 Pt 2): 59S–66S

    Article  Google Scholar 

  215. LaCreta FP, Kollia GD, Duncan G, et al. Age and gender effects on the pharmacokinetics of gatifloxacin. Pharmacotherapy 2000; 20(6 Pt 2): 67S–75S

    Article  Google Scholar 

  216. Grasela DM, Christofalo B, Kollia GD, et al. Safety and pharmacokinetics of a single oral dose of gatifloxacin in patients with moderate to severe hepatic impairment. Pharmacotherapy 2000; 20 (6 Pt 2): 87S–94S

    Article  CAS  PubMed  Google Scholar 

  217. Abramowicz ME. Gatifloxacin and moxifloxacin: two new fluoroquinolones. The Medical Letter 2000 Feb 21; 42(1072): 15–7

    Google Scholar 

  218. Lober S, Ziege S, Rau M, et al. Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium. Antimicrob Agents Chemother 1999; 43(5): 1067–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Allen A, Bygate E, Clark D, et al. The effect of food on the bioavailability of oral gemifloxacin in healthy volunteers [poster]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  220. Allen A, Vousden M, Porter A, et al. The effect of ferrous sulphate and sucralfate on the bioavailability of oral gemifloxacin in healthy volunteers [poster]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  221. Saliba F, Isaac L, Barker PJ, et al. The pharmacokinetics and tolerability of a single oral dose of gemifloxacin in patients with mild or moderate hepatic impairment [poster]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  222. Allen A, Sorgel F, Pay V, et al. Distribution of gemifloxacin into saliva, sweat, tears and nasal secretion in healthy volunteers [poster]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  223. Allen A, Walls CM, McDonnell D, et al. Pharmacokinetics of gemifloxacin administered to patients with severe renal impairment and patients on dialysis [poster]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  224. Efthymiopoulos C, Bramer SL, Maroli A, et al. Effect of renal impairment on the pharmacokinetics of grepafloxacin. Clin Pharmacokinet 1997; 33 Suppl. 1: 32–8

    Article  CAS  PubMed  Google Scholar 

  225. Child J, Andrews JM, Wise R. Pharmacokinetics and tissue penetration of the new fluoroquinolone grepafloxacin. Antimicrob Agents Chemother 1995; 39(2): 513–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Efthymiopoulos C, Bramer SL, Maroli A. Pharmacokinetics of grepafloxacin after oral administration of single and repeat doses in healthy young males. Clin Pharmacokinet 1997; 33 Suppl 1: 1–8

    Article  CAS  PubMed  Google Scholar 

  227. Kozawa O, Uematsu T, Matsuno H, et al. Comparative study of pharmacokinetics of two new fluoroquinolones, balofloxacin and grepafloxacin, in elderly subjects. Antimicrob Agents Chemother 1996; 40(12): 2824–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Efthymiopoulos C, Bramer SL, Maroli A, et al. Grepafloxacin pharmacokinetics in individuals with hepatic dysfunction. Clin Pharmacokinet 1997; 33 Suppl. 1: 25–31

    Article  CAS  PubMed  Google Scholar 

  229. Efthymiopoulos C, Bramer SL, Maroli A. Effect of food and gastric pH on the bioavailability of grepafloxacin. Clin Pharmacokinet 1997; 33 Suppl. 1: 18–24

    Article  CAS  PubMed  Google Scholar 

  230. Chien SC, Rogge MC, Gisclon LG, et al. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob Agents Chemother 1997; 41(10): 2256–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Chien SC, Chow AT, Natarajan J, et al. Absence of age and gender effects on the pharmacokinetics of a single 500-milligram oral dose of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41(7): 1562–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Fish DN, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 1997; 32(2): 101–19

    Article  CAS  PubMed  Google Scholar 

  233. Chien SC, Wong FA, Fowler CL, et al. Double-blind evaluation of the safety and pharmacokinetics of multiple oral once-daily 750-milligram and 1-gram doses of levofloxacin in healthy volunteers. Antimicrob Agents Chemother 1998; 42(4): 885–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Stass H, Kubitza D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J Antimicrob Chemother 1999; 43 Suppl. B: 83–90

    Article  CAS  PubMed  Google Scholar 

  235. Stass H, Dalhoff A, Kubitza D, et al. Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. Antimicrob Agents Chemother 1998; 42(8): 2060–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Sullivan JT, Woodruff M, Lettieri J, et al. Pharmacokinetics of a once-daily oral dose of moxifloxacin (Bay 12-8039), a new enantiomerically pure 8-methoxy quinolone. Antimicrob Agents Chemother 1999; 43(11): 2793–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Wise R, Andrews JM, Marshall G, et al. Pharmacokinetics and inflammatory-fluid penetration of moxifloxacin following oral or intravenous administration. Antimicrob Agents Chemother 1999; 43(6): 1508–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Stass H, Halabi A, Delesen H. No dose adjustment needed for patient’s with renal impairment receiving oral BAY 12-8039 [abstr]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  239. Stass H, Ohl F, Walk G, et al. No dose adjustment is needed for moxifloxacin in subjects suffering from hepatic impairment [abstract]. 9th European Congress of Clinical Microbiology and Infectious Diseases; 1999 Mar 19–20; Munich, Germany

  240. Nakashima M, Uemtsa T, Kosuge K, et al. Pharmacokinetics and tolerance of DU-6859a, anew fluoroquinolone, after single and multiple oral doses in healthy volunteers [published erratum appears in Antimicrob Agents Chemother 1995; 39(4): 1015]. Antimicrob Agents Chemother 1995; 39(1): 170–4

    Article  CAS  Google Scholar 

  241. Johnson JH, Cooper MA, Andrews JM, et al. Pharmacokinetics and inflammatory fluid penetration of sparfloxacin. Antimicrob Agents Chemother 1992; 36(11): 2444–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Montay G, Bruno R, Vergniol JC, et al. Pharmacokinetics of sparfloxacin in humans after single oral administration at doses of 200, 400, 600, and 800 mg. J Clin Pharmacol 1994; 34(11): 1071–6

    Article  CAS  PubMed  Google Scholar 

  243. Shimada J, Nogita T, and Ishibashi Y. Clinical pharmacokinetics of sparfloxacin. Clin Pharmacokinet 1993; 25(5): 358–69

    Article  CAS  PubMed  Google Scholar 

  244. Montay G. Pharmacokinetics of sparfloxacin in healthy volunteers and patients: a review. J Antimicrob Chemother 1996; 37 Suppl A: 27–39

    Article  CAS  PubMed  Google Scholar 

  245. Kamberi M, Kotegawa T, Tsutsumi K, et al. Sparfloxacin pharmacokinetics in healthy volunteers: the influence of acidification and alkalinization. Eur J Clin Pharmacol 1998; 54(8): 633–7

    Article  CAS  PubMed  Google Scholar 

  246. Johnson R, Geary W, Jenssen B. The absolute oral bioavailability of sparfloxacin in healthy male subjects [abstract]. 36th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans (CA)

  247. Zix JA, Geerdes-Fenge HF, Rau M, et al. Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate. Antimicrob Agents Chemother 1997; 41(8): 1668–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Fillastre JP, Montay G, Bruno R, et al. Pharmacokinetics of sparfloxacin in patients with renal impairment. Antimicrob Agents Chemother 1994; 38(4): 733–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Ritz M, Lode H, Fassbender M, et al. Multiple-dose pharmacokinetics of sparfloxacin and its influence on fecal flora. Antimicrob Agents Chemother 1994; 38(3): 455–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Mugnier P, Taburet AM, Wyld PJ, et al. Pharmacokinetics of sparfloxacin in patients with hepatic failure [abstract]. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1994 Oct 4–7; Washington, DC

  251. Melnik G, Schwesinger WH, Teng R, et al. Hepatobiliary elimination of trovafloxacin and metabolites following single oral doses in healthy volunteers. Eur J Clin Microbiol Infect Dis 1998; 17(6): 424–6

    Article  CAS  PubMed  Google Scholar 

  252. Vincent J, Dogolo L, Baris BA, et al. Single- and multiple-dose administration, dosing regimens, and pharmacokinetics of trovafloxacin and alatrofloxacin in humans. Eur J Clin Microbiol Infect Dis 1998; 17(6): 427–30

    Article  CAS  PubMed  Google Scholar 

  253. Teng R, Dogolo L, Willavize SA, et al. Oral bioavailability of trovafloxacin with and without food in healthy volunteers. J Antimicrob Chemother 1997; 39 Suppl B: 87–92

    Article  CAS  PubMed  Google Scholar 

  254. Teng R, Liston TE, Harris SC. Multiple-dose pharmacokinetics and safety of trovafloxacin in healthy volunteers. J Antimicrob Chemother 1996; 37(5): 955–63

    Article  CAS  PubMed  Google Scholar 

  255. Teng R, Harris SC, Nix DE, et al. Pharmacokinetics and safety of trovafloxacin (CP-99,219), anew quinolone antibiotic, following administration of single oral doses to healthy male volunteers. J Antimicrob Chemother 1995; 36(2): 385–94

    Article  CAS  PubMed  Google Scholar 

  256. Vincent J, Teng R, Dalvie DK, et al. Pharmacokinetics and metabolism of single oral doses of trovafloxacin. Am J Surg 1998; 176 (6A Suppl.): 8S–13S

    Article  CAS  PubMed  Google Scholar 

  257. Wise R, Mortiboy D, Child J, et al. Pharmacokinetics and penetration into inflammatory fluid of trovafloxacin (CP-99,219). Antimicrob Agents Chemother 1996; 40(1): 47–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Vincent J, Venitz J, Teng R, et al. Pharmacokinetics and safety of trovafloxacin in healthy male volunteers following administration of single intravenous doses of the prodrug, alatrofloxacin. J Antimicrob Chemother 1997; 39 Suppl. B: 75–80

    Article  CAS  PubMed  Google Scholar 

  259. Package insert, Gatifloxacin, Bristol Myers Squibb. 2001. Connecticut, USA

  260. Gotfried MH, Danzinger LH, Rodvold K. Steady state plasma and intrapulmonary concentrations of levofloxacin and ciprofloxacin in healthy adult subjects. Chest 2001; 119: 1114–22

    Article  CAS  PubMed  Google Scholar 

  261. Andrews JM, Honeybourne D, Jevons G, et al. Concentration of levofloxacin (HR 355) in the respiratory tract following a single dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1997; 40: 573–7

    Article  CAS  PubMed  Google Scholar 

  262. LaCreta F, Kolia G, Duncan G, et al. Effect of a high-fat meal on the bioavailability of gatifloxacin in healthy volunteers [abstract]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  263. Wilson APR, Gruneberg RN. Ciprofloxacin: 10 years of clinical experience. Somerset: Maxim Medical, 1997

    Google Scholar 

  264. Wise R, Honeybourne D. A review of the penetration of sparfloxacin into the lower respiratory tract and sinuses. J Antimicrob Chemother 1996; 37 Suppl. A: 57–63

    Article  CAS  PubMed  Google Scholar 

  265. Honeybourne D, Andrews JM, Cunningham B, et al. The concentrations of clinafloxacin in alveolar macrophages, epithelial lining fluid, bronchial mucosa and serum after administration of single 200 mg oral doses to patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1999; 43(1): 153–5

    Article  CAS  PubMed  Google Scholar 

  266. Tanimura H, Uchiyama K, Kashiwagi H. Gallbladder tissue concentrations, biliary excretion and pharmacokinetics of OPC-17116. Drugs 1995; 49 Suppl. 2: 341–3

    Article  CAS  PubMed  Google Scholar 

  267. Takahashi Y, Itoh Y, Doi T, et al. Penetration of OPC-17116, a new quinolone compound, into male genital tracts and its in vitro antibacterial activity [abstract]. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy; 1991 Sep 29–Oct 2; Chicago (IL)

  268. Takahashi Y, Itoh Y, Doi T, et al. Penetration of OPC-17116, a new quinolone compound, into male genital tracts and its in vitro antibacterial activity [abstract]. 31st Interscience Conference on Antimicrobial Agents and Chemotherapy; 1991 Sep 29–Oct 2; Chicago (IL)

  269. Cook PJ, Andrews JM, Wise R, et al. Concentrations of OPC-17116, anew fluoroquinolone antibacterial, in serum and lung compartments. J Antimicrob Chemother 1995; 35(2): 317–26

    Article  CAS  PubMed  Google Scholar 

  270. Ohnishi H, Tanimura H, Ichimiya G, et al. Excretion of levofloxacin into bile and gallbladder tissue [abstract]. Drugs 1993; 45 Suppl. 3: 260–1

    Article  Google Scholar 

  271. Child J, Mortiboy D, Andrews JM, et al. Open-label crossover study to determine pharmacokinetics and penetration of two dose regimens of levofloxacin into inflammatory fluid. Antimicrob Agents Chemother 1995; 39(12): 2749–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Muller M, Stass H, Brunner M, et al. Penetration of moxifloxacin into peripheral compartments in humans. Antimicrob Agents Chemother 1999; 43(10): 2345–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Soman A, Honeybourne D, Andrews J, et al. Concentrations of moxifloxacin in serum and pulmonary compartments following a single 400 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 1999; 44(6): 835–8

    Article  CAS  PubMed  Google Scholar 

  274. Andrews J, Honeybourne D, Jevons G, et al. Penetration of Bay 12-8039 into bronchial mucosa, epithelial lining [abstract]. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  275. Cutler NR, Vincent J, Jhee SS, et al. Penetration of trova-floxacin into cerebrospinal fluid in humans following intravenous infusion of alatrofloxacin. Antimicrob Agents Chemother 1997; 41(6): 1298–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  276. Childs S, Gleason D, Immergut M, et al. Penetration of trovafloxacin into prostatic tissue following multiple dosing in man [abstract]. 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 28–Oct 1; Toronto (ON)

  277. Andrews JM, Honeybourne D, Brenwald NP, et al. Concentrations of trovafloxacin in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum after administration of single or multiple oral doses to patients undergoing fibreoptic bronchoscopy. J Antimicrob Chemother 1997; 39(6): 797–802

    Article  CAS  PubMed  Google Scholar 

  278. Peleman RA, Van De Velde V, Germonpre PR, et al. Trovafloxacin concentrations in airway fluids of patients with severe community-acquired pneumonia. Antimicrob Agents Chemother 2000; 44(1): 178–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  279. Gatifloxacin and moxifloxacin: two new fluoroquinolones. Med Lett Drugs Ther 2000; 42(1072): 15–7

    Google Scholar 

  280. Bradley JS, Kearns GL, Reed MD, et al. Pharmacokinetics of a fluoronaphthyridone, trovafloxacin (CP 99,219), in infants and children following administration of a single intravenous dose of alatrofloxacin. Antimicrob Agents Chemother 2000; 44(5): 1195–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Wise R. A review of the clinical pharmacology of moxifloxacin, a new 8-methoxy quinolone and its potential relationship to therapeutic efficacy. Clin Drug Invest 1999; 17(5): 365–87

    Article  CAS  Google Scholar 

  282. Wise R, Andrews JM. The pharmacokinetics and inflammatory fluid penetration of gemifloxacin [abstract]. 11th European Congress Clinical Microbiology and Infectious Diseases; 2001 Apr 1–4; Istanbul, Turkey

  283. Naber C, Hammer M, Kinzig-Schippers M, et al. Pharmacokinetics and penetration of gemifloxacin versus ofloxacin into prostate secretions and ejaculate after single oral dosing in volunteers [abstract]. 11th European Congress on Clinical Microcrobiology and Infectious Diseases; 2001 Apr 1–4; Istanbul, Turkey

  284. Allen A, Sorgel F, Pay V, et al. Distribution of gemifloxacin into saliva sweat tears and nasal secretions in healthy volunteers [abstract]. 11th European Congress on Clinical Microbiology and Infectious Diseases; 2001 Apr 1–4; Istanbul, Turkey

  285. Lacy MK, Nicolau DP, Nightingale CH, et al. Oral bioavaila-bility and pharmacokinetics of trovafloxacin in patients with AIDS. Antimicrob Agents Chemother 1999; 43(12): 3005–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Goodwin SD, Gallis HA, Chow AT, et al. Pharmacokinetics and safety of levofloxacin in patients with human immunodeficiency virus infection. Antimicrob Agents Chemother 1994; 38(4): 799–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26(1): 1–12

    Article  CAS  PubMed  Google Scholar 

  288. Ambrose PG, Owens RC. New antibiotics in pulmonary and critical care medicine: focus on advanced generation quinolones and cephalosporins. Sem Resp Crit Care Med 2000; 21(1): 19–32

    Article  CAS  Google Scholar 

  289. Dalhoff A. Pharmacodynamics of fluoroquinolones. J Antimicrob Chemother 1999; 43 Suppl B: 51–9

    Article  CAS  PubMed  Google Scholar 

  290. Vogelman B, Craig WA. Kinetics of antimicrobial activity. J Pediatr 1986; 108: 835–40

    Article  CAS  PubMed  Google Scholar 

  291. Pickerill KE, Paladino JA, Schentag JJ. Comparison of the fluoroquinolones based on pharmacokinetic and pharmacodynamic parameters. Pharmacotherapy 2000; 20(4): 417–28

    Article  CAS  PubMed  Google Scholar 

  292. Lode H, Borner K, Koeppe P. Pharmacodynamics of fluoroquinolones. Clin Infect Dis 1998; 27(1): 33–9

    Article  CAS  PubMed  Google Scholar 

  293. Schentag JJ, Nix DE, Forrest A. Pharmacodynamics of the fluoroquinolones, in quinolone antimicrobial agents. 2nd ed. Hooper DC, Wolfson JS, editors. Washington, DC: American Society for Microbiology, 1993

  294. Rotschafer JC, Zabinski RA, Walker KJ. Pharmacodynamic factors of antibiotic efficacy. Pharmacotherapy 1992; 12: 64S–70S

    CAS  PubMed  Google Scholar 

  295. Hyatt JM, McKinnon PS, Zimmer GS, et al. The importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome: focus on antibacterial agents. Clin Pharmacokinet 1995; 28: 143–60

    Article  CAS  PubMed  Google Scholar 

  296. Bowker KE, Wootton M, Rogers CA, et al. Comparison of invitro pharmacodynamics of once and twice daily ciprofloxacin. J Antimicrob Chemother 1999; 44(5): 661–7

    Article  CAS  PubMed  Google Scholar 

  297. Madaras-Kelly KJ, Ostergaard BE, Lovde LB, et al. Twenty-four hour area under the concentration-time curve/MIC ratio as a generic predictor of fluoroquinolone antimicrobial effect by using three strains of Pseudomonas aeruginosa and an in vitro pharmacodynamic model. Antimicrob Agents Chemother 1996; 40: 627–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Blaser J, Stone BB, Groner MC, et al. Comparative study with enoxacin and netilimicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bacterial activity and emergence of resistance. Antimicrob Agents Chemother 1987; 31: 1054–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. MacGowan AP, Bowker KE, Wootton M, et al. Activity of moxifloxacin, administered once a day, against Streptococcus pneumoniae in an in vitro pharmacodynamic model of infection. Antimicrob Agents Chemother 1999; 43(7): 1560–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Hershberger E, Rybak MJ. Activities of trovafloxacin, gatifloxacin, clinafloxacin, sparfloxacin, levofloxacin, and ciprofloxacin against penicillin-resistant Streptococcus pneumoniae in an in vitro infection model. Antimicrob Agents Chemother 2000; 44(3): 598–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Hoang A, Raddotz JK, Houde LB, et al. An in-vitro pharmacodynamic evaluation of levofloxacin against four strains of penicillin resistant S.pneumoniae [abstract]. 97th American Society for Microbiology. 1997 May 21–24. Miami (OR)

  302. Preston SL, Drusano GL, Berman AL, et al. Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials [see comments]. JAMA 1998; 279(2): 125–9

    Article  CAS  PubMed  Google Scholar 

  303. Forrest A, Nix DE, Ballow CH, et al. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 1993; 37(5): 1073–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Forrest A, Chodosh S, Amantea MA, et al. Pharmacokinetics and pharmacodynamics of oral grepafloxacin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40 Suppl A: 45–57

    Article  CAS  PubMed  Google Scholar 

  305. Tran JQ, Ballow CH, Forrest A, et al. Comparison of the abilities of grepafloxacin and clarithromycin to eradicate potential bacterial pathogens from the sputa of patients with chronic bronchitis: influence of pharmacokinetic and pharmacodynamic variables. J Antimicrob Chemother 2000; 45: 9–17

    Article  CAS  PubMed  Google Scholar 

  306. Thomas JK, Forrest A, Bhavnani SM, et al. Pharmacodynamic evaluation of factors associated with the development of bacterial resistance in acutely ill patients during therapy. Antimicrob Agents Chemother 1998; 42(3): 521–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Zhanel GG, Noreddin AM. Pharmacokinetics and pharmacody-namics of the new fluoroquinolones: focus on respiratory infections. Curr Opin Pharmacol 2001; 1: 459–63

    Article  CAS  PubMed  Google Scholar 

  308. Lacy MK, Lu W, Xu X, et al. Pharmacodynamic comparisons of levofloxacin, ciprofloxacin, and ampicillin against Streptococcus pneumoniae in an in vitro model of infection. Anti-microb Agents Chemother 1999; 43(3): 672–7

    Article  CAS  Google Scholar 

  309. Lister PD, Sanders CC. Pharmacodynamics of levofloxacin and ciprofloxacin against Streptococcus pneumoniae. J Anti-microb Chemother 1999; 43(1): 79–86

    Article  CAS  Google Scholar 

  310. Lister PD, Sanders CC. Pharmacodynamics of trovafloxacin, ofloxacin, and ciprofloxacin against Streptococcus pneumoniae in an in vitro pharmacokinetic model. Antimicrob Agents Chemother 1999; 43(5): 1118–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Coyle EA, Rybak MJ. Evaluation of the activity of the newer fluoroquinolones against ciprofloxacin-resistant Streptococcus pneumoniae (SP) [abstract].39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  312. MacGowan AP, Bowker KE, Wootton M, et al. Exploration of the in-vitro pharmacodynamic activity of moxifloxacin for Staphylococcus aureus and Streptococci of lancefield groups A and G. J Antimicrob Chemother 1999; 44(6): 761–6

    Article  CAS  PubMed  Google Scholar 

  313. Vostrov SN, Kononenko OV, Lubenko IY, et al. Comparative pharmacodynamics of gatifloxacin and ciprofloxacin in an in vitro dynamic model: prediction of equiefficient doses and the breakpoints of the area under the curve/MIC ratio. Antimicrob Agents Chemother 2000; 44(4): 879–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  314. Firsov AA, Vasilov RG, Vostrov SN, et al. Prediction of the antimicrobial effects of trovafloxacin and ciprofloxacin on staphylococci using an in-vitro dynamic model. J Antimicrob Chemother 1999; 43: 483–90

    Article  CAS  PubMed  Google Scholar 

  315. Pankuch GA, Jacobs MR, Appelbaum PC. Post-antibiotic and post-antibiotic subMIC effect of gatifloxacin against gram-positive and -negative bacteria. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  316. Boswell FJ, Andrews JM, Wise R. Pharmacodynamic properties of BAY 12-8039 on gram-positive and gram-negative organisms as demonstrated by studies of time-kill kinetics and postantibiotic effect. Antimicrob Agents Chemother 1997; 41(6): 1377–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Moore T, Kershner K, Donald B, et al. Postantibiotic effect (PAE) of gemifloxacin (SB-265805) and ciprofloxacin against gram-positive and gram-negative organisms. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  318. Mackenzie FM, Gould IM. The post-antibiotic effect. J Antimicrob Chemother 1993; 32: 519–37

    Article  CAS  PubMed  Google Scholar 

  319. Credito KL, Clark CL, Jacobs MR, et al. Post-antibiotic effect (PAE) of gemifloxacin (SB 265805) compared with five other quinolones against pneumococci. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  320. Cars O, Odenholt-Tornqvist I. The post-antibiotic sub-MIC effect in vitro and in vivo. J Antimicrob Chemother 1993; 31 Suppl D: 159–66

    Article  CAS  PubMed  Google Scholar 

  321. Licata L, Smith CE, Goldschmidt RM, et al. Comparisons of the post-antibiotic and post-antibiotic sub-MIC effects of levofloxacin and ciprofloxacin on Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 1997; 41: 950–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. Zhanel GG, Hoban DJ, Harding GKM. Subinhibitory antimicrobial concentrations: a review of in-vitro and in-vivo data. Can J Infect Dis 1992; 3(4): 193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  323. DeAbate CA, Mclvor RA, Elvaine P, et al. Gatifloxacin vs ce-furoxime axetil in patients with acute exacerbations of chronic bronchitis. J Respir Dis 1999; 20 (11 Suppl.): S23–9

    Google Scholar 

  324. Ramirez A, Molina J, Holmann A, et al. Gatifloxacin treatment in patients with acute exacerbations of chronic bronchitis: clinical trial results. J Respir Dis 1999; 20 (11 Suppl.): S30–9

    Google Scholar 

  325. Fogarty C, McAdoo MA, Paster R, et al. Gatifloxacin vs clarithromycin in the management of acute sinusitis. J Respir Dis 1999; 20 (11 Suppl.): S17–22

    Google Scholar 

  326. Lopez-Sisniega JA, Jones RW, Kaminszczik G, et al. Treating acute, uncomplicated bacterial sinusitis with gatifloxacin. J RespirDis 1999; 20 (11 Suppl.): S11–6

    Google Scholar 

  327. Lopez-Sisniega JA, Fogarty C, Dowell ME, et al. Gatifloxacin in the treatment of acute bacterial sinusitis (ABS) in Mexico. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  328. Fogarty C, Dowell MC, Ellison WT, et al. Treating community-acquired pneumonia in hospitalized patients: gatifloxacin vs ceftriaxone/clarithromycin. J RespirDis 1999; 20 (11 Suppl.): S60–9

    Google Scholar 

  329. Ramirez JA, Nguyen T, Tellier G, et al. Treating community-acquired pneumonia with once-daily gatifloxacin vs twice-daily clarithromycin. J RespirDis 1999; 20(11 Suppl.): S40–8

    Google Scholar 

  330. Sullivan JG, McElroy A, Hansinger RW, et al. Treating community-acquired pneumonia with once-daily gatifloxacin vs once-daily levofloxacin. J Respir Dis 1999; 20 (11 Suppl.): S49–59

    Google Scholar 

  331. Ball P, Wilson R, Mardell LA, et al. Effective short-course therapy of acute exacerbation of chronic bronchitis (AECB) with once daily gemifloxacin [abstract M125]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  332. Gehanno P, Poole MD, Wald ER, et al. Efficacy of 7 days of gemifloxacin in patients with acute bacterial sinusitis (ABS) [abstract M126]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  333. File T, Schlemmer B, Garau J, et al. Efficacy of once daily gemifloxacin in the treatment of community-acquired pneumonia [abstract M129]. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  334. Tsang KW, Chan WM, Ho PL, et al. A comparative study on the efficacy of levofloxacin and ceftazidime in acute exacerbation of bronchiectasis. Eur Respir J 1999; 14(5): 1206–9

    Article  CAS  PubMed  Google Scholar 

  335. Davies BI, Maesen FP. Clinical effectiveness of levofloxacin in patients with acute purulent exacerbations of chronic bronchitis: the relationship with in-vitro activity. J Antimicrob Chemother 1999; 43 Suppl. C: 83–90

    Article  CAS  PubMed  Google Scholar 

  336. DeAbate CA, Russell M, McElvaine P, et al. Safety and efficacy of oral levofloxacin versus cefuroxime axetil in acute bacterial exacerbations of chronic bronchitis. Respir Care 1997; 42(2): 206–13

    Google Scholar 

  337. Habib MP, Russell M, De Abate CA, et al. Multicenter, randomized study comparing efficacy and safety of oral levofloxacin and cefaclor in treatment of acute bacterial exacerbations of chronic bronchitis. Infect Dis Clin Practice 1998; 7: 1–9

    Article  Google Scholar 

  338. Shah PM, Maesen FP, Dolmann A, et al. Levofloxacin versus cefuroxime axetil in the treatment of acute exacerbation of chronic bronchitis: results of a randomized, double-blind study. J Antimicrob Chemother 1999; 43(4): 529–39

    Article  CAS  PubMed  Google Scholar 

  339. Adelglass J, Jones TM, Ruoff G, et al. A multicenter, investigator-blinded, randomized comparison of oral levofloxacin and oral clarithromycin in the treatment of acute bacterial sinusitis. Pharmacother 1998; 18(6): 1255–63

    CAS  Google Scholar 

  340. Lasko B, Lau CY, Saint-Pierre C, et al. Efficacy and safety of oral levofloxacin compared with clarithromycin in the treatment of acute sinusitis in adults: a multicentre, double-blind, randomized study. J Internat Med Research 1998; 26(6): 281–91

    Article  CAS  Google Scholar 

  341. Sydnor TA, Kopp EJ, Anthony KE, et al. Open-label assessment of levofloxacin for the treatment of acute bacterial sinusitis in adults. Ann Allergy Asthma Immunol 1998; 80: 357–62

    Article  CAS  PubMed  Google Scholar 

  342. File TM, Segreti J, Dunbar L, et al. A multicenter, randomized study comparing the efficacy and safety of intravenous and/or oral levofloxacin versus ceftriaxone and/or cefuroxime axetil in treatment of adults with community-acquired pneumonia. Antimicrob Agents Chemother 1997; 41(9): 1965–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Chodosh S, DeAbate Ca, Haverstock D, et al. Short-course moxifloxacin therapy for treatment of acute bacterial exacerbations of chronic bronchitis. The Bronchitis Study Group. Respir Med 2000; 94(1): 18–27

    CAS  Google Scholar 

  344. Wilson R, Kubin R, Ballin I, et al. Five day moxifloxacin therapy compared with 7 day clarithromycin therapy for the treatment of acute exacerbations of chronic bronchitis. J Antimicrob Chemother 1999; 44(4): 501–13

    Article  CAS  PubMed  Google Scholar 

  345. Baz MN, Jannetti W, Villanueva C, et al. The efficacy and tolerability of moxifloxacin compared to trovafloxacin in the treatment of acute sinusitis. Today’s Ther Trends 1999; 17(4): 303–9

    Google Scholar 

  346. Burke T, Villanueva C, Mariano H, et al. Moxifloxacin versus cefuroxime axetil in the treatment of acute sinusitis (abstr). 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  347. Fogarty C, Ramirez L, De Abate L, et al. Efficacy and safety of moxifloxacin vs clarithromycin for community-acquired pneumonia. Infect Med 1999; 16(11): 748–63

    Google Scholar 

  348. Patel T, Pearl J, Williams J, et al. Efficacy and safety of ten day moxifloxacin 400 mg once daily in the treatment of patients with community-acquired pneumonia. Community Acquired Pneumonia Study Group. Respir Med 2000; 94(2): 97–105

    CAS  Google Scholar 

  349. Kobayashi H. ‘The clinical efficacy of sitafloxacin (DU-6859a) in respiratory tract infection’. Diaichi Pharmaceuticals, Tokyo, Japan; 2000 [data on file]

  350. Wilson R, Ball P, Mandell L, et al. Efficacy of once daily gemifloxacin (GEMI) for 5 days compared with twice daily clarithromycin for 7 days in the treatment of AECB. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. 2000 Sep 17–20. Toronto

  351. Ball P, Wilson R, Mandell L, et al. Gemifloxacin long-term outcomes in bronchitis exacerbations (GLOBE) study: an assessment of health outcome benefits in AECB patients following 5 days gemifloxacin therapy. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy. 2000 Sep 17–20. Toronto

  352. Bird N, Lewis A, Montague T, et al. Assessment of the effect of gemifloxacin on QTc interval of in healthy volunteers [poster no. 821]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy, 2000 Sep 17–20, Toronto (ON)

  353. File Jr. TM. Levofloxacin in the treatment of community-acquired pneumonia. Can Respir J 1999; 6 Suppl A: 35A–9A

    PubMed  Google Scholar 

  354. Welling LE, Burke CL, Tack KJ. Safety profile of clinafloxacin (CLX), a new fluoroquinolone antibiotic [abstract]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  355. Henkel TJ, McKayD, Young C. Safety of gemifloxacin in adult patients with respiratory and urinary tract infections. 3rd European Congress of Chemotherapy; 2000 May 7–11; Madrid, Spain

  356. Langan CE, Cranfield R, Breisch S, et al. Randomized, double-blind study of grepafloxacin versus amoxycillin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1997; 40 Suppl A: 63–72

    Article  CAS  PubMed  Google Scholar 

  357. Chodosh S, Lakshminarayan S, Swarz H, et al. Efficacy and safety of a 10-day course of 400 or 600 milligrams of grepafloxacin once daily for treatment of acute bacterial exacerbations of chronic bronchitis: comparison with a 10-day course of 500 milligrams of ciprofloxacin twice daily. Antimicrob Agents Chemother 1998; 42(1): 114–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  358. Langan CE, Zuck P, Vogel R, et al. Randomized, double-blind study of short-course (5 day) grepafloxacin versus 10 day clarithromycin in patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 1999; 44(4): 515–23

    Article  CAS  PubMed  Google Scholar 

  359. Stahlmann R, Schwabe R. Safety profile of grepafloxacin compared with other fluoroquinolones. J Antimicrob Chemother 1997; 40 Suppl A: 83–92

    Article  CAS  PubMed  Google Scholar 

  360. Rubinstein E. Safety profile of sparfloxacin in the treatment of respiratory tract infections. J Antimicrob Chemother 1996; 37 Suppl A: 145–60

    Article  CAS  PubMed  Google Scholar 

  361. Lipsky BA, Dorr MB, Magner DJ. Safety profile of sparfloxacin (SPAR) in North American Phase III clinical trials [abstract].36th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans (CA)

  362. Breen J, Skuba K, Grasela D. Safety and tolerability of oral gatifloxacin, a new 8-methoxy fluoroquinolone: overview of clinical data [abstract]. 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  363. Leophonte P, Baldwin RJ, Pluck N, Trovafloxacin versus amoxicillin/clavulanic acid in the treatment of acute exacerbations of chronic obstructive bronchitis. Eur J Microbiol Infect Dis 1998; 17: 434–440

    Article  CAS  Google Scholar 

  364. O’Doherty B, Daniel R. Treatment of acute exacerbations of chronic bronchitis: comparison of trovafloxacin and amoxicillin in a multicentre, double-blind, double-dummy study. Eur J Clin Microbiol Infect Dis 1998; 17: 441–6

    Article  PubMed  Google Scholar 

  365. Williams D, Hopkins S. Safety of trovafloxacin in treatment of lower respiratory tract infections. Eur J Clin Microbiol Infect Dis 1998; 17: 454–8

    Article  CAS  PubMed  Google Scholar 

  366. Wellcome, G., Trovofloxacin hepatotoxicity [press release], 1999

  367. Jaillon P, Morganroth J, Brumpt L, et al. Overview of electro-cardiographic and cardiovascular safety data for sparfloxacin. J Antimicrob Chemo 1996; 37 Suppl A: 161–7

    Article  CAS  Google Scholar 

  368. Dupont H, Timsit H, Souweine B, et al. Torsades de pointe probably related to sparfloxacin [letter]. Eur J Clin Microbiol Infect Dis 1996; 15: 350–1

    Article  CAS  PubMed  Google Scholar 

  369. Products, EAFTEOM, Public statement on trovafloxacin/alatrofloxacin: recommendation to suspend the marketing authorisation in the European Union. 1999, London

  370. Lucena MI, Andrade RJ, Rodrigo L, et al. Trovafloxacin-induced acute hepatitis. Clin Infect Dis 2000; 30(2): 400–1

    Article  CAS  PubMed  Google Scholar 

  371. Menzies D, Klein NC, Cunha BC. Trovafloxacin neurotoxicity. Am J Med 1999; 107: 298–9

    Article  CAS  PubMed  Google Scholar 

  372. Pfizer, Data on file, 1999

  373. Lieu PK, Tok SC, Ismail NH, et al. Ciprofloxacin-induced cutaneous vasculitis. Allergy 1997; 52(5): 593–4

    Article  CAS  PubMed  Google Scholar 

  374. Ferguson J, McEwan J, Al-Ajmi H, et al. A comparison of the photosensitizing potential of trovafloxacin with that of other quinolones in healthy subjects. J Antimicrob Chemother 2000; 45(4): 503–9

    Article  CAS  PubMed  Google Scholar 

  375. Wainwright NJ, Collins P, Ferguson J. Photosensitivity associated with antibacterial agents. Drag Saf 1993; 9(6): 437–40

    Article  CAS  Google Scholar 

  376. Ferguson J, Dawe R. Phototoxicity in quinolones: comparison of ciprofloxacin and grepafloxacin. J Antimicrob Chemother 1997; 40 Suppl A: 93–8

    Article  CAS  PubMed  Google Scholar 

  377. Matsumoto M, Kojima K, Nagano H, et al. Photostability and biological activity of fluoroquinolones substituted at the 8 position after UV irradiation. Antimicrob Agents Chemother 1992; 36(8): 1715–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Kusajima H, Manita S, Yamamoto T, et al. Phototoxicity and photochemical generation of reactive oxygen by new quinolones. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  379. Ferguson J, Mc Ewen J, Gohler K, et al. A double-blind, placebo- and positive-controlled, randomized study to investigate the phototoxic potential of gatifloxacin, a new fluoroquinolone antibiotic. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  380. Man I, Murphy J, Ferguson J. Fluoroquinolone phototoxicity: a comparison of moxifloxacin and lomefloxacin in normal volunteers. J Antimicrob Chemother 1999; 43 Suppl B: 77–82

    Article  CAS  PubMed  Google Scholar 

  381. Vousden M, Ferguson J, Richards J, et al. Evaluation of phototoxic potential of gemifloxacin in healthy volunteers compared with ciprofloxacin. Chemotherapy 1999; 45(6): 512–20

    Article  CAS  PubMed  Google Scholar 

  382. Ball P. Quinolone-induced QT interval prolongation: a not-so-un-exptected class effect. J Antimicrob Chemo 2000; 45: 557–9

    Article  CAS  Google Scholar 

  383. Drugs causing prolongation of the QT interval and torsades de pointes. Can Med Assoc J 1998 Jan 12; 158: 103–4

    Google Scholar 

  384. Samaha FF. QTC interval prolongation and polymorphic ventricular tachycardia in association with levofloxacin [letter]. Am J Med 1999; 107(5): 528–9

    Article  CAS  PubMed  Google Scholar 

  385. Allen A, Bygate E, Teillol-Foo M. Multiple-dose pharmacokinetics and tolerability of gemifloxacin following oral doses to healthy volunteers [abstract]. 21st International Congress of Chemotherapy; 1999 Jul 4–7; Birmingham

  386. Stahlmann R, Forster C, VanSickle D. Quinolones in children: are concerns over arthropathy justified? Drug Saf 1993; 9(6): 397–403

    Article  CAS  PubMed  Google Scholar 

  387. Schaad UB. Role of the new quinolones in pediatric practice. Pediatr Infect Dis J 1992; 11: 1043–6

    Article  CAS  PubMed  Google Scholar 

  388. Kubin R. Safety and efficacy of ciprofloxacin in paediatric patients: review. Infection 1993; 21(6): 413–21

    Article  CAS  PubMed  Google Scholar 

  389. Khaliq Y, Zhanel GG. Fluoroquiniolone-induced tendinopathy. Clin Infect Dis 2001 (submitted)

  390. Martell M, de Ben S, Weinberger M, et al. Growth and development in preterm infants receiving fluoroquinolones. J Perinat Med 1996; 24: 287–91

    Article  CAS  PubMed  Google Scholar 

  391. Loebstein R, Addis A, Ho E, et al. Pregnancy outcome following gestational exposure to fluoroquinolones: a multicenter prospective controlled study. Antimicrob Agents Chemother 1998; 42(6): 1336–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Shiba K, Sakamoto M, Nagazawa Y, et al. Effects of antacid on absorption and excretion of new quinolones. Drugs 1995; 49 Suppl 2: 360–1

    Article  Google Scholar 

  393. Ellis RJ, Mayo MS, Bodensteiner DM. Ciprofloxacin-warfarin coagulopathy: a case series. Am J Hematol 2000; 63(1): 28–31

    Article  CAS  PubMed  Google Scholar 

  394. Niki Y, Yashiguchi K, Okimoto N, et al. Quinolone antimicrobial agents and theophylline [letter]. Chest 1992; 101(3): 881

    Article  CAS  PubMed  Google Scholar 

  395. LaCreta FP, Kaul S, Kollia GD, et al. Pharmacokinetics (PK) and safety of gatifloxacin in combination with ferrous sulphate or calcium carbonate in healthy volunteers [abstract]. Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  396. Niki Y, Hashiguchi K, Okimoto N, et al. Effect of AM-1155 on the serum concentration of trovafloxacin [abstract]. Programs and abstracts of the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1996 Sep 15–18; New Orleans (CA)

  397. Allen A, Vousden M, Porter A, et al. Effect of Maalox on the bioavailability of oral gemifloxacin in healthy volunteers. Chemotherapy 1999; 45(6): 504–11

    Article  CAS  PubMed  Google Scholar 

  398. Davy M, Allen A, Bird N, et al. Lack of effect of gemifloxacin on the steady-state pharmacokinetics of theophylline in healthy volunteers. Chemotherapy 1999; 45(6): 478–84

    Article  CAS  PubMed  Google Scholar 

  399. Davy M, Bird N, Rost KL, et al. Lack of effect of gemifloxacin on the steady-state pharmacodynamics of warfarin in healthy volunteers. Chemotherapy 1999; 45(6): 491–5

    Article  CAS  PubMed  Google Scholar 

  400. Shiba K, Sakai O, Shimada J, et al. Effects of antacids, ferrous sulphate, and ranitidine on absorption of DR-3355 in humans. Antimicrob Agents Chemother 1992; 36(10): 2270–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  401. Gisclon LG, Curtin CR, Fowler CL, et al. Absence of a pharmacokinetic interaction between intravenous theophylline and orally administered levofloxacin. J Clin Pharmacol 1997; 37: 744–50

    Article  CAS  PubMed  Google Scholar 

  402. Liao S, Palmer M, Fowler CA, et al. Absence of an effect of levofloxacin on warfarin pharmacokinetics and anticoagulation in male volunteers [abstract]. Programs and abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy. 1995 Sep 15–19. San Francisco (CA)

  403. Doose DR, Walker SA, Chien SC, et al. Levofloxacin does not alter cyclosporine disposition. J Clin Pharmacol 1998; 38: 90–3

    Article  CAS  PubMed  Google Scholar 

  404. Gaitonde MD, Fowler CA, Palmer M, et al. The effects of cimetidine and probenecid on the pharmacokinetics of levofloxacin (LVFX) [abstract]. Programs and abstracts of the 35th Interscience Conference on Antimicrobial Agents and Chemotherapy. 1995 Sep 15–19. San Francisco (CA)

  405. Stass HH, Schuhly U, Wardel C, et al. Study to evaluate the interaction between oral moxifloxacin and sucralfate in healthy volunteers [abstract]. Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  406. Stass HH, Boettcher M, Horstmann R. Study to evaluate the interaction between Bay 12-8039 (BA) and antacids (AN) [abstract]. 20th International Congress of Chemotherapy; 1997 Jun 29–Jul 2; Sydney, Australia

  407. Stass HH, Kubitza D, Schwietert R, et al. Bay 12-8039 (BA) does not interact with theophylline (TH) [abstract]. 20th International Congress of Chemotherapy; 1997: Jul 2; Sydney, Australia

  408. Stass HH, Dietrich H, Sachse E. Influence of a four-time dosing of 500 mg probenecid on kinetics of BAY 12-8039 after administration of a single 400 mg dose in healthy male volunteers [abstract]. Programs and abstracts of the 37th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1997 Sep 27–Oct 1; Toronto (ON)

  409. Muller FO, Hundt HKL, Muir AR, et al. Study to investigate the influence of 400 mg BAY 12-8039 (M) given once daily to healthy volunteers on PK and PD of warfarin (W) [abstract]. Programs and abstracts of the 38th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1998 Sep 25–27; San Diego (CA)

  410. Niki Y, Itokawa K, Okazaki O. Effects of DU-6859a, a new quinolone antimicrobial, on theophylline metabolism in in vitro and in vivo studies. Antimicrob Agents Chemother 1998; 42(7): 1751–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Deppermann K, Lode H. Fluoroquinolones: interaction profile during enterai absorption. Drugs 1993; 45 Suppl 3: 65–72

    Article  PubMed  Google Scholar 

  412. Tanaka M, Kurata T, Fujisaw C, et al. Mechanistic study of inhibition of levofloxacin absorption by aluminum hydroxide. Antimicrob Agents Chemother 1993; 37: 2173–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Lee L, Hafkin B, Lee ID, et al. Effect of food and sucralfate on a single oral dose of 500 milligrams of levofloxacin in healthy subjects. Antimicrob Agents Chemother 1997; 41(10): 2196–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  414. Vousden M, Allan A, Lewis A, et al. Lack of pharmacokinetic interaction between gemifloxacin and digoxin in healthy elderly volunteers. Chemotherapy 1999; 45(6): 485–90

    Article  CAS  PubMed  Google Scholar 

  415. Horstmann R, Delesen H, Dietrich H, et al. No drug-drug interaction between moxifloxacin and B-acetyldigoxin [abstract]. J Clin Pharmacol 1998; 38(2): 879

    Google Scholar 

  416. Olsen SJ, Uderman HD, Kaul S, et al. Pharmacokinetics (PK) of concomitantly adminstered gatifloxacin and digoxin [abstract]. Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  417. Pechere J, Lacey L. Optimizing economic outcomes in antibiotic therapy of patients with acute bacterial exacerbations of chronic bronchitis. J Antimicrob Chemother 2000; 45 (Topic T2): 19–24

    Article  CAS  PubMed  Google Scholar 

  418. Lave JR, Smith R, Jones M, et al. The cost of treating patients with community-acquired pneumonia. Sem Resp Care 1999; 20(3): 189–97

    Article  Google Scholar 

  419. Niederman MS, McCombs JS, Unger AN, et al. The cost of treating community-acquired pneumonia. Clin Ther 1998; 20(4): 820–37

    Article  CAS  PubMed  Google Scholar 

  420. Gallagher KM, L’Italien GJ, Mauskopf J, et al. Abbreviated length of stay in hospitalized patients with community-acquired pneumonia treated with gatifloxacin. Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999:29; San Francisco (CA)

  421. Grossman R, Mukherjee J, Vaughan D, et al. A 1-year community-based health economic study of ciprofloxacin vs usual antibiotic treatment in acute exacerbations of chronic bronchitis. Chest 1998; 113(1): 131–41

    Article  CAS  PubMed  Google Scholar 

  422. Palmer C, Zhan C, Halpern M, et al. Economic evaluation for the community-acquired pneumonia intervention trial assessing Levaquin study. Programs and abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy; 1999 Sep 26–29; San Francisco (CA)

  423. Mandell LA, Marrie TJ, Grossman RF, et al. Canadian guidelines for the initial managEment of community-acquired pneumonia: an evidence-based update by the Canadian infectious diseases society and the Canadian thoracic society. Clin Infect Dis 2000; 31: 383–421

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank M.Wegrzyn for secretarial assistance. The following declarations are made regarding grant/research support and/or advisory boards and/or sponsored speakers: Drs Zhanel and Hoban (Bayer, Parke Davis, Bristol Myers Squibb, GlaxoSmithKline, Janssen Ortho, Pfizer), Dr Vercaigne (Bayer, Janssen Ortho), Dr Gin (Bayer, Bristol Myers Squibb, Janssen Ortho) and Dr Embil (Bayer, Bristol Myers Squibb, GlaxoSmithKline, Janssen Ortho, Pfizer).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George G. Zhanel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanel, G.G., Ennis, K., Vercaigne, L. et al. A Critical Review of the Fluoroquinolones. Drugs 62, 13–59 (2002). https://doi.org/10.2165/00003495-200262010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200262010-00002

Keywords

Navigation