Skip to main content
Log in

Pharmacokinetic Considerations in the Treatment of Tuberculosis in Patients with Renal Failure

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tuberculosis is re-emerging in patients with altered immune status, such as those with chronic renal failure. Clinicians should thus be aware of the pharmacokinetics and dosage adjustment of antitubercular drugs in patients with renal insufficiency. Among patients with renal insufficiency, those who are dialysed should be treated with special care. Indeed, dosage should always be closely adjusted in these patients and potential removal by dialysis must be taken into account.

However reliable the dosage adjustment recommendations are for these drugs in patients with renal failure, further pharmacokinetic investigations need to be performed, especially in dialysis patients in whom the influence of haemodialysis and continuous ambulatory peritoneal dialysis on drug pharmacokinetics needs to be detailed. In the meantime, it could be generally advised to administer all antitubercular drugs after the haemodialysis session, even though some drugs are known to be non-dialysable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII

Similar content being viewed by others

References

  1. Murray CJL, Lopez AD, editors. The global burden of disease: global burden of disease and injury series. Vol 1. Cambridge (MA): Harvard University Press, 1996: 345–50

  2. Bastian I, Colebunders R. Treatment and prevention of multidrug-resistant tuberculosis. Drugs 1999; 58: 633–61

    Article  PubMed  CAS  Google Scholar 

  3. Wilson WEC, Kirpatrick CH, Talmage DW. Suppression of immunologic responsiveness in uremia [letter]. Ann Intern Med 1965; 62: 1

    Google Scholar 

  4. Cengiz K. Increased incidence of tuberculosis in patients undergoing hemodialysis. Nephron 1996; 73: 421–4

    Article  PubMed  CAS  Google Scholar 

  5. Maher D, Chaulet P, Spinaci S, et al. Treatment of tuberculosis: guidelines for national programmes. 2nd ed. Global tuberculosis programme. Geneva: World Health Organization, 1997

    Google Scholar 

  6. Blumberg HM, Burman WJ, Chaisson RE, et al. American Thoracic Society/Centers for Diseases Control and Prevention/ Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 2003; 167: 603–62

    Article  PubMed  Google Scholar 

  7. Launay-Vacher V, Storme T, Izzedine H, et al. Pharmacokinetic changes in renal failure [in French]. Presse Med 2001; 30: 597–604

    PubMed  CAS  Google Scholar 

  8. Wong MO, Eldon MA, Keane WF, et al. Disposition of gabapentin in anuric subjects on hemodialysis. J Clin Pharmacol 1995; 35: 622–6

    PubMed  CAS  Google Scholar 

  9. Izzedine H, Launay-Vacher V, Baumelou A, et al. An appraisal of antiretroviral drugs in hemodialysis. Kidney Int 2001; 60: 821–30

    Article  PubMed  CAS  Google Scholar 

  10. Launay-Vacher V, Izzedine H, Baumelou A, et al. Dialysis of drugs: a novel index FHD [abstract]. J Am Soc Nephrol 2004; 15: 630A

    Google Scholar 

  11. Douglas JG, McLeod MJ. Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clin Pharmacokinet 1999; 37: 127–46

    Article  PubMed  CAS  Google Scholar 

  12. Dickinson JM, Mitchison DA. In vitro studies on the choice of drugs for intermittent chemotherapy. Tubercle 1966; 47: 370–80

    Article  Google Scholar 

  13. Dickinson JM, Ellard GA, Mitchison DA. Suitability of isoniazid and ethambutol for intermittent administration in the treatment of tuberculosis. Tubercle 1968; 49: 351–66

    Article  PubMed  CAS  Google Scholar 

  14. Awaness AM, Mitchison DA. Cumulative effects of pulsed exposures of Mycobacterium tuberculosis to isoniazid. Tubercle 1973; 54: 153–8

    Article  PubMed  CAS  Google Scholar 

  15. Ethambutol plus isoniazid for the treatment of pulmonary tuberculosis: a controlled trial of four regimens. Tubercle 1981; 62: 13-29

  16. Dickinson JM, Mitchison DA. Observations in vitro on the suitability of pyrazinamide for intermittent chemotherapy of tuberculosis. Tubercle 1970; 51: 389–96

    Article  PubMed  CAS  Google Scholar 

  17. A controlled comparison of four regimens of streptomycin plus pyrazinamide in the retreatment of tuberculosis. Tubercle 1969; 50: 81-114

  18. Aronoff GR, Berns JS, Brier ME, et al. Drug prescribing in renal failure: dosing guidelines for adults. 4th ed. Philadelphia (PA): American College of Physicians, 1999

    Google Scholar 

  19. Bassilios N, Launay-Vacher V, Deray G. GPR Antibactériens: guide de prescription des médicaments chez le patient insuffisant rénal. Paris: Méditions International, 2002

    Google Scholar 

  20. Jamis-Dow CA, Katki AG, Collins JM, et al. Rifampin and rifabutin and their metabolism by human liver esterases. Xenobiotica 1997; 27: 1015–24

    Article  PubMed  CAS  Google Scholar 

  21. Nakashima M, Uematsu T, Kosuge K, et al. Single- and multiple-dose pharmacokinetics of AM-1155, a new 6-fluoro-8-methoxy quinolone, in humans. Antimicrob Agents Chemother 1995; 39: 2635–40

    Article  PubMed  CAS  Google Scholar 

  22. Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis. Drugs 2002; 62: 2169–83

    Article  PubMed  CAS  Google Scholar 

  23. Launay-Vacher V, Deray G. Therapeutic drug monitoring in patients with chronic renal failure: In: Mouly S, Sellier P, editors. Monitoring thérapeutique des anti-infectieux: des exigencies réglementaires au bon usage du médicament. Paris: Springer, 2004: 51–8

    Google Scholar 

  24. Cockcroft DW, Gault MH. Prediction of creatinin clearance from serum creatinine. Nephron 1976; 16: 31–41

    Article  PubMed  CAS  Google Scholar 

  25. Takayama K, Armstrong EL, Kunugi KA, et al. Inhibition by ethambutol of mycolic acid transfer into the cell wall of Mycobacterium smegmatis. Antimicrob Agents Chemother 1979; 16: 240–2

    Article  PubMed  CAS  Google Scholar 

  26. Peets EA, Sweeney WM, Place VA, et al. The absorption, excretion and metabolic fate of ethambutol in man. Am Rev Respir Dis 1965; 91: 51–8

    PubMed  CAS  Google Scholar 

  27. Lee CS, Gambertoglio JG, Brater DC, et al. Kinetics of oral ethambutol in the normal subjects. Clin Pharmacol Ther 1977; 22: 615–21

    PubMed  CAS  Google Scholar 

  28. Lee CS, Brater DC, Gambertoglio JG, et al. Disposition kinetics of ethambutol in man. J Pharmacokinet Biopharm 1980; 8: 335–46

    PubMed  CAS  Google Scholar 

  29. Ellard GA. Chemotherapy of tuberculosis for patients with renal impairment. Nephron 1993; 64: 169–81

    Article  PubMed  CAS  Google Scholar 

  30. Citron KM. Ethambutol: a review with special reference to ocular toxicity. Tubercle 1969; 50 Suppl.: 32–6

    Article  PubMed  Google Scholar 

  31. Doster B, Murray FJ, Newman R, et al. Ethambutol in the initial treatment of pulmonary tuberculosis: US public health service tuberculosis therapy trials. Am Rev Respir Dis 1973; 107: 177–90

    PubMed  CAS  Google Scholar 

  32. Christopher TG, Blair A, Forrey A, et al. Kinetics of ethambutol elimination in renal disease. Clin Proc Dial Transplant Forum 1973; 3: 96–100

    CAS  Google Scholar 

  33. Maher JF. Pharmacologic aspects of regular dialysis treatment. In: Drucker W, Parsons FM, Maher JF, editors. Replacement of renal function by dialysis. The Hague: Nijhoff, 1978: 369–99

    Google Scholar 

  34. Papadamitrou M, Memmos D, Metaxas P. Tuberculosis in patients on regular haemodialysis. Nephron 1979; 24: 53–7

    Article  Google Scholar 

  35. Andrew OT, Shoenfeld PY, Hopewell PC, et al. Tuberculosis in patients with end-stage renal disease. Am J Med 1980; 68: 59–65

    Article  PubMed  CAS  Google Scholar 

  36. Varughese A, Brater DC, Benet LZ, et al. Ethambutol kinetics in patients with impaired renal function. Am Rev Respir Dis 1986; 134: 34–8

    PubMed  CAS  Google Scholar 

  37. Rutsky EA, Rostland SG. Mycobacteriosis in patients with chronic renal failure. Arch Intern Med 1980; 140: 57–61

    Article  PubMed  CAS  Google Scholar 

  38. Bennett WM. Guide to drug dosage in renal failure. Clin Pharmacokinet 1988; 15: 326–54

    Article  PubMed  CAS  Google Scholar 

  39. Mitchison DA, Ellard GA. Tuberculosis in patients having dialysis [letter]. BMJ 1980 Jun 21; 280(6230): 1533

    Article  PubMed  CAS  Google Scholar 

  40. Malone RS, Fish DN, Spiegel DM, et al. The effect of hemodialysis on isoniazid, rifampin, pyrazinamide, and ethambutol. Am J Respir Crit Care Med 1999; 159: 1580–4

    PubMed  CAS  Google Scholar 

  41. Dickinson JM, Aber VR, Mitchison DA. Bactericidal activity of streptomycin, isoniazid, rifampin, ethambutol and pyrazinamide alone and in combination against Mycobacterium tuberculosis. Am Rev Respir Dis 1977; 116: 627–35

    PubMed  CAS  Google Scholar 

  42. Ellard GA, Gammon PT. Pharmacokinetics of isoniazid metabolism in man. J Pharmacokinet Biopharm 1976; 4: 83–113

    PubMed  CAS  Google Scholar 

  43. Peters JH, Miller KS, Brown P. Studies on the metabolic basis for the genetically determined capacities for isoniazid inactivation in man. J Pharmacol Exp Ther 1965; 150: 298–304

    PubMed  CAS  Google Scholar 

  44. Ellard GA. A slow-release preparation of isoniazid: pharmacological aspects. Bull Int Union Tuberc 1976; 51: 143–54

    Google Scholar 

  45. Peloquin CA, James GT, Craig LD, et al. Pharmacokinetic evaluation of aconiazide, a potentially less toxic isoniazid prodrug. Pharmacotherapy 1994; 14: 415–23

    PubMed  CAS  Google Scholar 

  46. Kim YG, Shin JG, Shin SG, et al. Decreased acetylation of isoniazid in chronic renal failure. Clin Pharmacol Ther 1993; 54: 612–20

    Article  PubMed  CAS  Google Scholar 

  47. Siskind MS, Thienemann D, Kirlin L. Isoniazid-induced neurotoxicity in chronic dialysis patients: report of three cases and a review of the literature. Nephron 1993; 64: 303–6

    Article  PubMed  CAS  Google Scholar 

  48. Leung GKY, Tam PYW, Ting RH. Isoniazid toxicity in hemodialysis patients [abstract no. SA-PO967]. J Am Soc Nephrol 2002; 13: 464A

    Google Scholar 

  49. Altiparmak MR, Pamuk ON, Pamuk GE, et al. Is isoniazid ototoxic in patients undergoing hemodialysis? Nephron 2002; 92: 478–80

    Article  PubMed  CAS  Google Scholar 

  50. Ellard GA. Absorption, metabolism and excretion of pyrazinamide in man. Tubercle 1969; 50: 144–58

    Article  PubMed  CAS  Google Scholar 

  51. Lacroix C, Hoang TP, Nouveau J, et al. Pharmacokinetics of pyrazinamide and its metabolism in healthy subjects. Eur J Clin Pharmacol 1989; 36: 395–400

    Article  PubMed  CAS  Google Scholar 

  52. Lacroix C, Tranvouez JL, Phan Hoang T, et al. Pharmacokinetics of pyrazinamide and its metabolites in patients with hepatic cirrhotic insufficiency. Arzneimittel Forshung 1990; 1: 76–9

    Google Scholar 

  53. Konno K, Feldman FM, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 1967; 95: 461–9

    PubMed  CAS  Google Scholar 

  54. Heifets LB, Flory MA, Lindholm-Levy PJ. Does pyrazinoic acid as an active moiety of pyrazinamide have specific activity against Mycobacterium tuberculosis? Antimicrob Agents Chemother 1989; 33: 1252–4

    Article  PubMed  CAS  Google Scholar 

  55. Salfinger M, Crowle AJ, Reller LB. Pyrazinamide and pyrazinoic acid activity against tubercle bacilli in cultured human macrophages and in the BACTEC system. J Infect Dis 1990; 162: 201–7

    Article  PubMed  CAS  Google Scholar 

  56. Stamatakis G, Montes C, Trouvin JH, et al. Pyrazinamide and pyrazinoic acid pharmacokinetics in patients with chronic renal failure. Clin Nephrol 1988; 30: 230–4

    PubMed  CAS  Google Scholar 

  57. Yu TF, Berger L, Stone DJ, et al. Effects of pyrazinamide and pyrazinoic acid on urate clearance and other discrete renal functions. Proc Soc Exp Biol Med 1957; 96: 264–7

    PubMed  CAS  Google Scholar 

  58. Ellard GA, Haslam RM. Observations on the reduction of the renal elimination of urate in man caused by the administration of pyrazinamide. Tubercle 1976; 57: 97–103

    Article  PubMed  CAS  Google Scholar 

  59. Lacroix C, Hermelin A, Guiberteau R, et al. Haemodialysis of pyrazinamide in uraemic patients. Eur J Clin Pharmacol 1989; 37: 309–11

    Article  PubMed  CAS  Google Scholar 

  60. Woodley CL, Kilburn JO. Determination of in vitro susceptibility of Mycobacterium avium complex strains and Mycobacterium tuberculosis to a spiropiperidyl rifampicin. Am Rev Respir Dis 1982; 126: 586–7

    PubMed  CAS  Google Scholar 

  61. Heifets LB, Iseman MD. Determination of in vitro susceptibility of mycobacteria to ansamycin. Am Rev Respir Dis 1985; 132: 710–1

    PubMed  CAS  Google Scholar 

  62. Dickinson JM, Mitchison DA. In vitro activity of new rifamycins against rifampicin-resistant M. tuberculosis and MAIS-complex mycobacteria. Tubercle 1987; 68: 177–82

    Article  PubMed  CAS  Google Scholar 

  63. Pretet S, Lebeaut A, Parrot R, et al. Combined chemotherapy including rifabutin for rifampicin and isoniazid resistant pulmonary tuberculosis: GETIM (Group for the Study and Treatment of Resistant Mycobacterial Infection). Eur Respir J 1992; 5: 680–4

    PubMed  CAS  Google Scholar 

  64. Strolin Benedetti M, Dostert P. Induction and autoinduction properties of rifamycin derivatives: a review of animal and human studies. Environ Health Perspect 1994; 102 Suppl. 9: 101–5

    Article  PubMed  CAS  Google Scholar 

  65. Burman WJ, Gallicano K, Peloquin CA. Therapeutic implications of drug interactions in the treatment of HIV-related tuberculosis. Clin Infect Dis 1999; 28: 419–30

    Article  PubMed  CAS  Google Scholar 

  66. Cocchiara G, Strolin Benedetti M, Vicario GP, et al. Urinary metabolites of rifabutin, a new antimycobacterial agent, in human volunteers. Xenobiotica 1989; 19: 769–80

    Article  PubMed  CAS  Google Scholar 

  67. Battaglia R, Pianezzola E, Salgarollo G, et al. Absorption, distribution and preliminary metabolic pathway of 14C-rifabutin in animals and man. J Antimicrob Chemother 1990; 26: 813–22

    Article  PubMed  CAS  Google Scholar 

  68. Strolin Benedetti M, Efthymiopoulos C, Sassella D, et al. Auto-induction of rifabutin metabolism in man. Xenobiotica 1990; 20: 1113–9

    Article  PubMed  CAS  Google Scholar 

  69. Skinner MH, Blaschke TF. Clinical pharmacokinetics of rifabutin. Clin Pharmacokinet 1995; 28: 115–25

    Article  PubMed  CAS  Google Scholar 

  70. Narang PK, Schoenfelder J, Bianchine JR. Impact of altered rifabutin disposition in renal disease on its safety in AIDS patients (CD4<200ώgmol/l) [letter]. AIDS 1992; 6 Suppl. 1: 90

    Google Scholar 

  71. Brogden RN, Fitton A. Rifabutin: a review of its antimicrobial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 1994; 47: 983–1009

    Article  PubMed  CAS  Google Scholar 

  72. Bassilios N, Launay-Vacher V, Hamani A, et al. Pharmacokinetics and dosage adjustment of rifabutin in one hemodialysis patient. Nephrol Dial Transplant 2002; 17: 531–2

    Article  PubMed  Google Scholar 

  73. Kenny MT, Strates B. Metabolisme and pharmacokinetics of the antibiotic rifampin. Drug Metab Rev 1981; 12: 159–218

    Article  PubMed  CAS  Google Scholar 

  74. Maggi N, Furesz S, Pallanza R, et al. Rifampicin desacetylation in the human organism. Arzneimittel Forshung 1969; 19: 651–4

    CAS  Google Scholar 

  75. Acocella G, Mattiussi R, Segre G. Multicompartmental analysis of serum, urine and bile concentrations of rifampicin and desacetyl-rifampicin in subjects treated for one week. Pharmacol Res Commun 1978; 10: 271–88

    Article  PubMed  CAS  Google Scholar 

  76. Ji B, Truffot-Pernot C, Lacroix C, et al. Effectiveness of rifampin, rifabutin, and rifapentine for preventive therapy of tuberculosis in mice. Am Rev Respir Dis 1993; 148: 1541–6

    Article  PubMed  CAS  Google Scholar 

  77. Temple ME, Nahata MC. Rifapentine: its role in the treatment of tuberculosis. Ann Pharmacother 1999; 33: 1203–10

    Article  PubMed  CAS  Google Scholar 

  78. Mor N, Simon B, Mezo N, et al. Comparison of activities of rifapentine and rifampin against Mycobacterium tuberculosis residing in human macrophages. Antimicrob Agents Chemother 1995; 39: 2073–7

    Article  PubMed  CAS  Google Scholar 

  79. Vital Durand D, Hampden C, Boobis AR, et al. Induction of mixed function oxidase activity in man by rifapentine (MDL 473), a long-acting rifamycin derivative. Br J Clin Pharmacol 1986; 21: 1–7

    Article  PubMed  CAS  Google Scholar 

  80. Emary WB, Toren PC, Mathews B, et al. Disposition and metabolism of rifapentine, a rifamycin antibiotic, in mice, rats, and monkeys. Drug Metab Dispos 1998; 26: 725–31

    PubMed  CAS  Google Scholar 

  81. Doluisio JM, Dittert LW, La Piana JC. Pharmacokinetics of kanamycin following intramuscular administration. J Pharmacokinet Biopharm 1973; 1: 253–65

    CAS  Google Scholar 

  82. Wlaker JM, Wise R, Mitchard M. The pharmacokinetics of amikacin and gentamicin in volunteers: a comparison of individual differences. J Antimicrob Chemother 1979; 5: 95–9

    Article  Google Scholar 

  83. de Jager P, van Altena R. Hearing loss and nephrotoxicity in long-term aminoglycoside treatment in patients with tuberculosis. Int J Tuberc Lung Dis 2002; 6: 622–7

    PubMed  Google Scholar 

  84. Bartal C, Danon A, Schlaeffer F, et al. Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 2003; 114: 194–8

    Article  PubMed  CAS  Google Scholar 

  85. Davidson PT, Le HQ. Drug treatment of tuberculosis: 1992. Drugs 1992; 43: 651–73

    Article  PubMed  CAS  Google Scholar 

  86. Lehmann CR, Garrett LE, Winn RE, et al. Capreomycin kinetics in renal impairment and clearance by hemodialysis. Am Rev Respir Dis 1988; 138: 1312–3

    PubMed  CAS  Google Scholar 

  87. Zhu M, Nix DE, Adam RD, et al. Pharmacokinetics of cycloserine under fasting conditions and with high-fat meal, orange juice, and antacids. Pharmacotherapy 2001; 21: 891–7

    Article  PubMed  CAS  Google Scholar 

  88. Malone RS, Fish DN, Spiegel DM, et al. The effect of hemodialysis on cycloserine, ethionamide, para-aminosalicylate, and clofazimine. Chest 1999; 116: 984–90

    Article  PubMed  CAS  Google Scholar 

  89. Jenner PJ, Ellard GA, Gruer PJ, et al. A comparison of the blood levels and urinary excretion of ethionamide and prothionamide in man. J Antimicrob Chemother 1984; 13: 267–77

    Article  PubMed  CAS  Google Scholar 

  90. Venkatesan K. Clinical pharmacokinetic considerations in the treatment of patients with leprosy. Clin Pharmacokinet 1989; 16: 365–86

    Article  PubMed  CAS  Google Scholar 

  91. Jenner PJ, Ellard GA. High performance liquid chromatographic determination of ethionamide and prothionamide in body fluids. J Chromatogr 1981; 222: 245–51

    Google Scholar 

  92. Girling DJ. Adverse effects of antituberculosis drugs. Drugs 1982; 23: 56–74

    Article  PubMed  CAS  Google Scholar 

  93. Alvirez-Freites EJ, Carter JL, Cynamon MH. In vitro and in vivo activities of gatifloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002; 46: 1022–5

    Article  PubMed  CAS  Google Scholar 

  94. Rodriguez JC, Ruiz M, Lopez M, et al. In vitro activity of moxifloxacin, levofloxacin, gatifloxacin and linezolid against Mycobacterium tuberculosis. Int J Antimicrob Agents 2002; 20: 464–7

    Article  PubMed  CAS  Google Scholar 

  95. Cynamon MH, Sklaney M. Gatifloxacin and ethionamide as the foundation for therapy of tuberculosis. Antimicrob Agents Chemother 2003; 47: 2442–4

    Article  PubMed  CAS  Google Scholar 

  96. Mignot A, Guillaume M, Brault M, et al. Multiple-dose pharmacokinetics and excretion balance of gatifloxacin, a new fluoroquinolone antibiotic, following oral administration to healthy Caucasian volunteers. Chemotherapy 2002; 48: 116–21

    Article  PubMed  CAS  Google Scholar 

  97. Grasela DM. Clinical pharmacology of gatifloxacin, a new fluoroquinolone. Clin Infect Dis 2000; 31: S51–3

    Article  PubMed  CAS  Google Scholar 

  98. Gajjar DA, LaCreta FP, Uderman HD, et al. A dose-escalation study of the safety, tolerability, and pharmacokinetics of intravenous gatifloxacin in healthy adult men. Pharmacotherapy 2000; 20: 49–58S

    Article  Google Scholar 

  99. Langtry HD, Lamb HM. Levofloxacin: its use in infections of the respiratory tract, skin, soft tissues and urinary tract. Drugs 1998; 56: 487–515

    Article  PubMed  CAS  Google Scholar 

  100. Berning SE. The role of fluoroquinolones in tuberculosis today. Drugs 2001; 61: 9–18

    Article  PubMed  CAS  Google Scholar 

  101. Fish DM, Chow AT. The clinical pharmacokinetics of levofloxacin. Clin Pharmacokinet 1997; 32: 101–19

    Article  PubMed  CAS  Google Scholar 

  102. Levaquin® (Levofloxacin; Ortho-McNeil). Physicians’ desk reference. 56th ed. Montvale (NJ): Thomson Healthcare, 2002: 2537-43

  103. Gillespie SH, Billington O. Activity of moxifloxacin against mycobacteria. J Antimicrob Chemother 1999; 44: 393–5

    Article  PubMed  CAS  Google Scholar 

  104. Miyazaki E, Miyazaki M, Chen JM, et al. Moxifloxacin (BAY12-8039), a new 8-methoxyquinolone, is active in a mouse model of tuberculosis. Antimicrob Agents Chemother 1999; 43: 85–9

    Article  PubMed  CAS  Google Scholar 

  105. Ji B, Lounis N, Maslo C, et al. In vitro and in vivo activities of moxifloxacin and clinafloxacin against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42: 2066–9

    PubMed  CAS  Google Scholar 

  106. Stass H, Dalhoff A, Kubitza D, et al. Pharmacokinetics, safety, and tolerability of ascending single doses of moxifloxacin, a new 8-methoxy quinolone, administered to healthy subjects. Antimicrob Agents Chemother 1998; 42: 2060–5

    PubMed  CAS  Google Scholar 

  107. Barman Balfour JA, Wiseman LR. Moxifloxacin. Drugs 1999; 57: 363–73

    Article  Google Scholar 

  108. Stass H, Kubitza D, Schuhly U. Pharmacokinetics, safety and tolerability of moxifloxacin, a novel 8-methoxyfluoroquinolone, after repeated oral administration. Clin Pharmacokinet 2001; 40: 1–9

    Article  PubMed  CAS  Google Scholar 

  109. Stass H, Kubitza D. Pharmacokinetics and elimination of moxifloxacin after oral and intravenous administration in man. J Antimicrob Chemother 1999; 43 Suppl. B: 83–90

    Article  PubMed  CAS  Google Scholar 

  110. Barman Balfour JA, Lamb HM. Moxifloxacin: a review of its clinical potential in the management of community-acquired respiratory tract infections. Drugs 2000; 59: 115–39

    Article  Google Scholar 

  111. Stass H. Metabolism and excretion of moxifloxacin. Drugs 1999; 58: 231–2

    Article  CAS  Google Scholar 

  112. Stass H, Lettieri J. Pharmacokinetics of moxifloxacin in special populations. Drugs 1999; 58: 233–4

    Article  CAS  Google Scholar 

  113. Stass H, Kubitza D, Halabi A, et al. Pharmacokinetics of moxifloxacin, a novel 8-methoxy-quinolone, in patients with renal dysfunction. Br J Clin Pharmacol 2002; 53: 232–7

    Article  PubMed  CAS  Google Scholar 

  114. Peloquin CA, Berning SE, Huitt GA, et al. Once-daily and twice-daily dosing of p-aminosalicylic acid granules. Am J Respir Crit Care Med 1999; 159: 932–4

    PubMed  CAS  Google Scholar 

  115. Nicolau DP, Quintiliani R. Aminoglycosides. In: Yu VL, Merigan TC, Barriere S, et al., editors. Antimicrobial chemotherapy and vaccines. Baltimore (MD): Williams and Wilkins, 1998: 650–4

    Google Scholar 

  116. Williams PD, Bennett DB, Gleason CR, et al. Correlation between renal membrane binding and nephrotoxicity of aminoglycosides. Antimicrob Agents Chemother 1987; 31: 570–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Launay-Vacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Launay-Vacher, V., Izzedine, H. & Deray, G. Pharmacokinetic Considerations in the Treatment of Tuberculosis in Patients with Renal Failure. Clin Pharmacokinet 44, 221–235 (2005). https://doi.org/10.2165/00003088-200544030-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544030-00001

Keywords

Navigation