Skip to main content
Log in

Multiple signal transduction pathways mediated by 5-HT receptors

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Among human serotonin (5-HT) receptor subtypes, each G protein-coupled receptor subtype is reported to have one G protein-signaling cascade. However, the signaling may not be as simple as previously thought to be. 5-HT5A receptors are probably the least well understood among the 5-HT receptors, but the authors found that 5-HT5A receptors couple to multiple signaling cascades. When the 5-HT5A receptors were expressed in undifferentiated C6 glioma cells, they modulated the level of second messengers. For example, activation of 5-HT5A receptors inhibited the adenylyl cyclase activity and subsequently reduced the cAMP level, as previously reported. In addition to this known signaling via Gi/Go, 5-HT5A receptors are coupled to the inhibition of ADP-ribosyl cyclase and cyclic ADP ribose formation. On the other hand, activation of 5-HT5A receptors transiently opened the K+ channels, presumably due to the increase in intracellular Ca2+ after formation of inositol (1,4,5) trisphosphate. The K+ currents were inhibited by both heparin and pretreatment with pertussis toxin, suggesting the cross-talk between Gi/Go protein and phopholipase C cascade. Thus, the authors results indicate that 5-HT5A receptors couple to multiple second messenger systems and may contribute to the complicated physiological and pathophysiological states. Although this multiple signaling has been reported only for 5-HT5A/5-HT1 receptors so far, it is possible that other 5-HT receptor subtypes bear similar complexity. As a result, in addition to the wide variety of expression patterns of each 5-HT receptor subtype, it is possible that multiple signal transduction systems may add complexity to the serotonergic system in brain function. The investigation of these serotonergic signaling and its impairment at cellular level may help to understand the symptoms of brain diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnes N. M. and Sharp T. (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38, 1083–1152.

    Article  PubMed  CAS  Google Scholar 

  2. Albert P. R. and Tiberi M. (2001) Receptor signaling and structure: insights from serotonin-1 receptors. Trends Endocrinol. Metab. 12, 453–460.

    Article  PubMed  CAS  Google Scholar 

  3. Noda M., Yasuda S., Okada M., et al. (2003) Recombinant human serotonin 5A receptors stably expressed in C6 glioma cells couple to multiple signal transduction pathways. J. Neurochem. 84, 222–232.

    Article  PubMed  CAS  Google Scholar 

  4. Plassat J.-L., Boschert U., Amlaiky N., and Hen R. (1992) The mouse 5-HT5 receptor reveals a remarkable heterogeneity within the 5-HT1D receptor family. EMBO J. 11, 4779–4786.

    PubMed  CAS  Google Scholar 

  5. Matthes H., Boschert U., Amlaiky N., et al. (1993) Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors: cloning, functional expression, and chromosomal localization. Mol. Pharmacol. 43, 313–319.

    PubMed  CAS  Google Scholar 

  6. Erlander M. G., Lovenberg T. W., Baron B. M., et al. (1993) Two members of a distinct subfamily of 6-hydroxytryptamine receptors differentially expressed in rat brain. Prc. Natl. Acad. Sci. USA 90, 3452–3456.

    Article  CAS  Google Scholar 

  7. Wisden W., Parker E. M., Mahle C. D., et al. (1993) Cloning and characterization of the rat 5-HT5B receptor. Evidence that the 5-HT5B receptor couples to a G protein in mammalian cell membranes. FEBS Lett. 333, 25–31.

    Article  PubMed  CAS  Google Scholar 

  8. Rees S., den Daas I., Foord S., Goodson S., Bull D., Kilpatrick G., and Lee M. (1994) Cloning and characterization of the human 5-HT5A serotonin receptor. FEBS Lett. 355, 242–246.

    Article  PubMed  CAS  Google Scholar 

  9. Shimron-Abarbanell D., Erdmann J., Vogt I. R., et al. (1997) Human 5-HT5A receptor gene: systematic screening for DNA sequence variation and linkage mapping on chromosome 7q34-q36 using a polymorphism in the 5′ untranslated region. Biochem Biophys. Res. Commun. 233, 6–9.

    Article  PubMed  CAS  Google Scholar 

  10. Grailhe R., Grabtree G. W., and Hen R. (2001) Human 5-HT5A receptor; the 5-HT5A receptor is functional but the 5-HT5B receptor was lost during mammalian evolution. Eur. J. Pharmacol. 418, 157–167.

    Article  PubMed  CAS  Google Scholar 

  11. Weiß H. M., Haase W., Michel H., and Reiländer H. (1995) Expression of functional mouse 5-HT5A serotonin receptor in the methylotrophic yeast Pichia pastoris: pharmacological characterization and localization. FEBS Lett. 377, 451–456.

    Article  PubMed  Google Scholar 

  12. Humphrey P. P. A. (1997) The characterization and classification of neurotransmitter receptors. Ann. NY Acad. Sci. 812, 1–13.

    Article  PubMed  CAS  Google Scholar 

  13. Pasqualetti M., Ori M., Nardi I., Castagna M., Cassano G. B., and Marazzoto D. (1998) Distribution of the 5-HT5A serotonin receptor mRNA in the human brain. Mol. Brain Res. 56, 1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Carson M. J., Thomas E. A., Danielson P. E., and Sutcliffe J. G. (1996) The 5-HT5A serotonin receptor is expressed predominantly by astrocytes in which it inhibits cAMP accumulation: A mechanism for neuronal suppression of reactive astrocytes. GLIA 17, 317–326.

    Article  PubMed  CAS  Google Scholar 

  15. Branchet T. A. and Zgombick J. M. (1997) Molecular biology and potential functional role of 5-HT5, 5-HT6, and 5-HT7 receptors, in Handbook of Experimental Pharmacology. Serotonergic Neurons and 5-HT Receptors in the CNS, Baumgarten H. G. and Güther M., eds., Springer-Verlag, Berlin pp. 475–497.

    Google Scholar 

  16. Wang Z. Y., Keith I. M., Beckman M. J., Brownfield M. S., Vidruk E. H., and Bisfard G. E. (2000) 5-HT5A receptors in the carotid body chemoreception pathway of rat. Neurosci Lett. 278, 9–12.

    Article  PubMed  CAS  Google Scholar 

  17. Grailhe R., Waeber C., Dulawa S. C., Hornung J. P., Zhuang X., Brunner D., Geyer M. A., and Hen R. (1999) Increased exploratory activity and altered response to LSD in mice lacking the 5-HT(5A) receptor. Neuron 22, 581–591.

    Article  PubMed  CAS  Google Scholar 

  18. Iwata N., Ozaki N., Inada T., and Goldman D. (2001) Association of a 5-HT(5A) receptor polymorphism, Pro15Ser, to schiphrenia. Mol. Psychiatry 6, 217–219.

    Article  PubMed  CAS  Google Scholar 

  19. Birkett J. T., Arranz M. J., Munro J., Osbourn S., Kerwin R. W., and Collier D. A. (2000) Association analysis of the 5-HT5A gene in depression, psychosis and antipsychotic response. NeuroReport 11, 2017–2020.

    Article  PubMed  CAS  Google Scholar 

  20. Arias B., Collier D. A., Gasto C., Pintor L., Gutierres B., Valles V., and Fananas L. (2001) Genetic variation in the 5-HT5A receptor gene in patients with bipolar disorder and major depression. Neurosci. Lett. 303, 111–114.

    Article  PubMed  CAS  Google Scholar 

  21. Kinsey A. M., Wainwright A., Heavens R., Sirinathsinghji D. J., and Oliver K. R. (2001) Distribution of 5-ht(5A), 5-ht(5B), 5-ht(6) and 5-HT(7) receptor mRNAs in the rat brain. Brain Res. Mol. Brain Res. 88, 194–198.

    Article  PubMed  CAS  Google Scholar 

  22. Oliver K. R., Kinsey A. M., Wainwright A., and Sirinathsinghji D. J. (2000) Localization of 5-ht(5A) receptor-like immunoreactivity in the rat brain. Brain Res. 867, 131–142.

    Article  PubMed  CAS  Google Scholar 

  23. Duncan M. J., Jennes L., Jefferson J. B., and Brownfield M. S. (2000) Localization of serotonin(5A) receptors in discrete regions of the circadian timing system in the Syrian hamster. Brain Res. 869, 178–185.

    Article  PubMed  CAS  Google Scholar 

  24. Marazziti D., Ori M., Nardini M., Rossi A., Nardi I., and Cassano G. B. (2001) mRNA expression of serotonin receptors of type 2C and 5A in human resting lymphocytes. Neuropsychobiology 43, 123–126.

    Article  PubMed  CAS  Google Scholar 

  25. Hurley P. T., McMahon R. A., Fanning P., O’Boyle K. M., Rogers M., and Martin F. (1998) Functional coupling of a recombinant human 5-HT5a receptor to G-proteins in HEK-293 cells. Br. J. Pharmacol. 124, 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  26. Francken B. J. B., Jurzak M., Vanhauwe J. F. M., Luyten W. H. M. L., and Leysen J. E. (1998) The human 5-HT5A receptor couples to Gi/Go proteins and inhibits adenylate cyclase in HEK293 cells. Eur. J. Pharmacol. 361, 299–309.

    Article  PubMed  CAS  Google Scholar 

  27. Thomas E. A., Matli J. R., Hu J. L., Carson M. J., and Sutcliffe J. G. (2000) Purtussis toxin treatment prevents 5-HT5A receptor-mediated inhibition of cyclic AMP Accumulation in rat C6 glioma cells. J. Neurosci. Res. 61, 75–81.

    Article  PubMed  CAS  Google Scholar 

  28. Galione A., Lee H. C., and Busa W. B. (1991) Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253, 1143–1146.

    Article  PubMed  CAS  Google Scholar 

  29. Lee H. C., Aarhus R., and Walseth T. F. (1993) Calcium mobilization by dual receptors during fertilization of sea urchin eggs. Science 261, 352–355.

    Article  PubMed  CAS  Google Scholar 

  30. Meszaros L. G., Bak J., and Chu A. (1993) Cyclic ADP-ribose as an endogenous regulator of the non-skeletal type ryanodine receptor Ca2+ channel. Nature 364, 76–79.

    Article  PubMed  CAS  Google Scholar 

  31. Higashida H., Hashii M., Yokoyama S., Hoshi N., Chen X. L., Egorova A., Noda M., and Zhang J. S. (2001) Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase. Pharmacol. Ther. 90, 283–296.

    Article  PubMed  CAS  Google Scholar 

  32. Morita K., Kitayama S., and Dohi T. (1997) Stimulation of cyclic ADP-ribose synthesis by acetylcholine and its role in catecholamine release in bovine adrenal chromaffin cells. J. Biol. Chem. 272, 21,002–21,009.

    CAS  Google Scholar 

  33. Mothet J. P., Fossier P., Meunier F. M., Stinnakre J., Tauc L., and Baux G. (1998) Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J. Physiol. 507, 405–414.

    Article  PubMed  CAS  Google Scholar 

  34. Brailoiu E. and Miyamoto M. D. (2000) Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum. Neuroscience 95, 927–931.

    Article  PubMed  CAS  Google Scholar 

  35. Kato I., Takasawa S., Akabane A., et al. (1995) Regulatory role of CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in insulin secretion by glucose in pancreatic beta cells. Enhancedinsulin secretion in CD38-expressing transgenic mice. J. Biol. Chem. 270, 30,045–30,050.

    CAS  Google Scholar 

  36. Reyes-Harde M., Empson R., Potter B. V., Galione A., and Stanton P. K. (1999a) Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus. Proc. Natl. Acad. Sci USA 96, 4061–4066.

    Article  PubMed  CAS  Google Scholar 

  37. Reyes-Harde M., Potter B. V., Galion A., and Stanton P. K. (1999b) Induction of hippocampal LTD requires nitric-oxide-stimulated PKG activity and Ca2+ release from cyclic ADP-ribose-sensitive stores. J. Neurophysiol. 82, 1569–1576.

    PubMed  CAS  Google Scholar 

  38. White T. A., Walseth T. F., and Kannan M. S. (2002) Nitric oxide inhibits ADP-ribosyl cyclase through a cGMP-independent pathway in airway smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 283, L1065–1071.

    PubMed  CAS  Google Scholar 

  39. Zocchi E., Carpaneto A., Cerrano C., et al. (2001) The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc. Natl. Acad. Sci USA 98, 14,859–14,864.

    Article  CAS  Google Scholar 

  40. Ehrlich B. E., Kaftan E., Bezprozvannaya S., and Bezprozvanny I. (1994) The pharmacology of intracellular Ca(2+)-release channels. Trends Pharmacol. Sci. 15, 145–149.

    Article  PubMed  CAS  Google Scholar 

  41. Noda M., Katayama M., Brown D. A., et al. (1993) Coupling of m2 and m4 muscarinic acetylcholine receptor subtypes to Ca2+-dependent K+ channels in transformed NL308 neuroblastoma × fibroblast hybrid cells. Proc. R. Soc. Lond. B. 251, 215–224.

    Article  CAS  Google Scholar 

  42. Ishizaka N., Noda M., Kimura Y., et al. (1995) Inositol 1,4,5-trisphosphate formation and ryanodine-sensitive oscillations of cytosolic free Ca2+ concentrations in neuroblastoma × fibroblast hybrid NL308 cells expressing m2 and m4 muscarinic acetylcholine receptor subtypes. Pflügers Arch. Eur. J. Physiol. 429, 426–433.

    Article  CAS  Google Scholar 

  43. Mann J. J. (2003) Neurobiology of suicidal behaviour. Nat. Rev. Neurosci. 4, 819–828.

    Article  PubMed  CAS  Google Scholar 

  44. Muller C. P., Carey R. J., Huston J. P. (2003) Serotonin as an important mediator of cocaine’s behavioral effects. Drugs Today (Barc) 39, 497–511.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mami Noda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noda, M., Higashida, H., Aoki, S. et al. Multiple signal transduction pathways mediated by 5-HT receptors. Mol Neurobiol 29, 31–39 (2004). https://doi.org/10.1385/MN:29:1:31

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/MN:29:1:31

Index Entries

Navigation