Skip to main content
Log in

What evidence implicates airway smooth muscle in the cause of BHR?

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Bronchial hyperresponsiveness (BHR), the occurrence of excessive bronchoconstriction in response to relatively small constrictor stimuli, is a cardinal feature of asthma. Here, we consider the role that airway smooth muscle might play in the generation of BHR. The weight of evidence suggests that smooth muscle isolated from asthmatic tissues exhibits normal sensitivity to constrictor agonists when studied during isometric contraction, but the increased muscle mass within asthmatic airways might generate more total force than the lesser amount of muscle found in normal bronchi. Another salient difference between asthmatic and normal individuals lies in the effect of deep inhalation (DI) on bronchoconstriction. DI often substantially reverses induced bronchoconstriction in normals, while it often has much less effect on spontaneous or induced bronchoconstriction in asthmatics. It has been proposed that abnormal dynamic aspects of airway smooth muscle contraction—velocity of contraction or plasticity-elasticity balance—might underlie the abnormal DI response in asthma. We suggest a speculative model in which abnormally long actin filaments might account for abnormally increased elasticity of contracted airway smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pare, P. D., et al. (1991). The comparative mechaniscs and morphology of airways in asthma and in chronic obstructive pulmonary disease. Am. Rev. Respir. Dis. 143(5 Pt. 1), 1189–1193.

    PubMed  CAS  Google Scholar 

  2. Wiggs, B. R., et al. (1992). A model of airway narrowing in asthma and in chronic obstructivepulmonary disease. Am. Rev. Respir. Dis. 145(6), 1251–1258.

    PubMed  CAS  Google Scholar 

  3. Lambert, R. K., et al. (1993). Functional significance of increased airway smooth muscle in asthma and COPD. J. Appl. Physiol. 74(6), 2771–2781.

    PubMed  CAS  Google Scholar 

  4. Pare, P. D., et al. (1997). The functional consequences of airway remodeling in asthma. Monaldi Arch. Chest Dis. 52(6), 589–596.

    PubMed  CAS  Google Scholar 

  5. Woolcock, A. J., et al. (1991). Characteristics of bronchial hyperresponsiveness in chronic obstructive pulmonary disease and in asthma. Am. Rev. Respir. Dis. 143(6), 1438–1443.

    PubMed  CAS  Google Scholar 

  6. Fish, J. E., et al. (1981). Regulation of bronchomotor tone by lung inflation in asthmatic and nonasthmatic subjects. J. Appl. Physiol. 50(5), 1079–1086

    PubMed  CAS  Google Scholar 

  7. de Jongste, J. C., et al. (1987). In vitro responses of airways from an asthamtic patients. Eur. J. Respir. Dis. 71(1), 23–29.

    PubMed  Google Scholar 

  8. Schellenberg, R. R. and Foster, A. (1984), In vitro responses of human asthmatic airway and pulmonary vascular smooth muscle. Int. Arch. Allergy Appl. Immunol. 75(3), 237–241.

    PubMed  CAS  Google Scholar 

  9. Bjorck, T., Gustafsson, L. E., and Dahlen, S. E. (1992), Isolated bronchi from asthmatics are hyperresponsive to adenosine, which apparently acts indirectly by liberation of leukotrienes and histamine. Am. Rev. Respir. Dis. 145(5), 1087–1091.

    PubMed  CAS  Google Scholar 

  10. Thomson, N. C. (1987). In vivo versus in vitro human airway responsiveness to different pharmacologic stimuli. Am. Rev. Respir. Dis. 136(4 Pt. 2), S58-S62.

    PubMed  CAS  Google Scholar 

  11. Black, J. L. (1996). Role of airway smooth muscle. Am. J. Respir. Crit. Care Med. 153(6 Pt. 2), S2-S4.

    PubMed  CAS  Google Scholar 

  12. Goldie, R. G. (1990), Receptors in asthmatic airways. Am. Rev. Respir. Dis. 141(3 Pt. 2), S151-S156.

    PubMed  CAS  Google Scholar 

  13. Haddad, E. B., et al. (1996), Muscarinic and betaadrenergic receptor expression in peripheral lung from normal and asthmatic patients. Am. J. Physiol. 270(6 Pt. 1), L947-L953.

    PubMed  CAS  Google Scholar 

  14. Ebina, M., et al. (1993). Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am. Rev. Respir. Dis. 148(3), 720–726.

    PubMed  CAS  Google Scholar 

  15. Skloot, G., Permutt, S., and Togias, A. (1995), Airway hyperresponsiveness in asthma, a problem of limited smooth muscle relaxation with inspiration. J. Clin. Investig. 96(5), 2393–2403.

    Article  PubMed  CAS  Google Scholar 

  16. Brown, R. H., et al. (2001), High-resolution computed tomographic evaluation of airway distensibility and the effects of lung inflation on airway caliber in healthy subjects and individuals with asthma. Am. J. Respir. Crit. Care Med. 163(4), 994–1001.

    PubMed  CAS  Google Scholar 

  17. Seow, C. Y. and Stephens, N. L. (1988), Velocitylength-time relations in canine tracheal smooth musle. J. Appl. Physiol. 64(5), 2053–2057.

    PubMed  CAS  Google Scholar 

  18. Solway, J. (2000), What makes the airways contract abnormally? Is it inflammation? Am. J. Respir. Crit. Care Med. 161(3 Pt. 2), S164-S167.

    PubMed  CAS  Google Scholar 

  19. Jiang, H., et al. (1992). Ragweed sensitization-induced increase of myosin light chain kinase content in canine airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 7(6), 567–573.

    PubMed  CAS  Google Scholar 

  20. Jiang, H., et al. (1992), Bronchial smooth muscle mechanics of a canine model of allergic airway hyperresponsiveness. J. Appl. Physiol. 72(1), 39–45.

    PubMed  CAS  Google Scholar 

  21. Mitchell, R. W., et al. (1993). Effect of airway inflammation on smooth muscle shortening and contractility in guinea pig trachealis. Am. J. Physiol. 265(6 Pt. 1), L549-L554.

    PubMed  CAS  Google Scholar 

  22. Fan, T., et al. (1997). Airway responsiveness in two inbred strains of mouse isparate in IgE and IL-4 production. Am. J. Respir. Cell Mol. Biol. 17(2), 156–163.

    PubMed  CAS  Google Scholar 

  23. Mitchell, R. W., et al. (1994), Passive sensitization of human bronchi augments smooth muscle shortening velocity and capacity. Am. J. Physiol. 267(2 Pt. 1), L218-L222.

    PubMed  CAS  Google Scholar 

  24. Stephens, N. L., et al. (1999), Airway hyperreactivity, direct smooth muscle approach. Pulm. Pharmacol. Ther. 12(2), 97–101.

    Article  PubMed  CAS  Google Scholar 

  25. Shen, X., et al. (1997), Mechanisms for the mechanical response of airway smooth muscle to length oscillation. J. Appl. Physiol. 83(3), 731–738.

    PubMed  CAS  Google Scholar 

  26. Gerthoffer, W. T. and Gunst, S. J. (2001), Invited review: focal adhesion and small heat shock proteins in the regulation of actin remodeling and contractility in smooth muscle. J. Appl. Physiol. 91(2), 963–972.

    PubMed  CAS  Google Scholar 

  27. Tang, D. D. and Gunst, S. J. (2001), Depletion of focal adhesion kinase by antisense deperesses contractile activation of smooth muscle. Am. J. Physiol. Cell Physiol. 280(4), C874-C883.

    PubMed  CAS  Google Scholar 

  28. Fredberg, J. J., et al. (1999), Perturbed equilibrium of myosin binding in airway smooth muscle and its implications in bronchospasm. Am. J. Respir. Crit. Care Med. 159(3), 959–967.

    PubMed  CAS  Google Scholar 

  29. Fredberg, J. J., et al. (1997), Airway smooth muscle, tidal stretches, and dynamically determined contractile states. Am. J. Respir. Crit. Care Med. 156(6), 1752–1759.

    PubMed  CAS  Google Scholar 

  30. Seow, C. Y., Pratusevich, V. R., and Ford, L. E. (2000). Series-to-parallel transition in the filament lattice of airway smooth muscle. J. Appl. Physiol. 89(3), 869–876.

    PubMed  CAS  Google Scholar 

  31. Ford, L. E., Seow, C. Y., and Pratusevich, V. R. (1994). Plasticity in smooth muscle, a hypothesis. Can. J. Physiol. Pharmacol. 72(11), 1320–1324.

    PubMed  CAS  Google Scholar 

  32. Kuo, K. H., et al. (2001), Myosin thick filament lability induced by mechanical strain in airway smooth muscle. J. Appl. Physiol. 90(5), 1811–1816.

    PubMed  CAS  Google Scholar 

  33. Lakser, O. J., Lindeman, R., and Fredberg, J. J. (2002), Inhibition of the p38 MAP kinase pathway destabilizes smooth muscle length during physiological loading. Am. J. Physiol. Lung Cell Mol. Physiol. 282(5), L1117-L1121.

    PubMed  CAS  Google Scholar 

  34. Yamboliev, I. A., et al. (2000), Evidence for modulation of smooth muscle force by the p38 MAP kinase/HSP27 pathway. Am. J. Physiol. Heart Circ. Physiol. 278(6), H1899-H1907.

    PubMed  CAS  Google Scholar 

  35. Hedges, J. C., et al. (1999). A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J. Biol. Chem. 274(34), 24,211–24,219.

    Article  CAS  Google Scholar 

  36. Larsen, J. K., et al. (1997). Phosphorylation of the 27-kDa heat shock protein via p38 MAP kinase and MAPKAP kinase in smooth muscle. Am. J. Physiol. 273(5 Pt. 1), L930-L940.

    PubMed  CAS  Google Scholar 

  37. Pollard, T. D. and Cooper, J. A. (1986), Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55, 987–1035.

    Article  PubMed  CAS  Google Scholar 

  38. Bamburg, J. R. (1999), Proteins of the ADF/cofilin family, essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol. 15(1), 185–230.

    Article  PubMed  CAS  Google Scholar 

  39. Hautmann, M. B., et al. (1997), Angiotensin II-induced stimulation of smooth muscle {alpha}-actin expression by serum response factor and the homeodomain transcription factor MHox. Circ. Res. 81(4), 600–610.

    PubMed  CAS  Google Scholar 

  40. Sotiropoulos, A., et al. (1999). Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98(2), 159–169.

    Article  PubMed  CAS  Google Scholar 

  41. Mack, C. P., et al. (2001), Smooth muscle differentiation marker gene expression is regulated by rhoA-mediated actin polymerization. J. Biol. Chem.. 276(1), 341–347.

    Article  PubMed  CAS  Google Scholar 

  42. Yang, N., et al. (1998), Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393(6687), 809–812.

    Article  PubMed  CAS  Google Scholar 

  43. Maekawa, M., et al. (1999). Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285(5429), 895–898.

    Article  PubMed  CAS  Google Scholar 

  44. Croxton, T. L., Lande, B., and Hirshman, C. A. (1998), Role of G proteins in agonist-induced Ca2+ sensitization of tracheal smooth muscle. Am. J. Physiol. Lung Cell Mol. Physiol. 275(4), L748-L755.

    CAS  Google Scholar 

  45. Niwa, R., et al. (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108(2), 233–246.

    Article  PubMed  CAS  Google Scholar 

  46. Buss, F. and Jockusch, B. M. (1989). Tissue-specific expression of profilin. FEBS Lett. 249(1) 31–34.

    Article  PubMed  CAS  Google Scholar 

  47. Holt, M. R. and Koffer, A. (2001). Cell motility, proline-rich proteins promote protrusions. Trends Cell Biol. 11(1), 38–46.

    Article  PubMed  CAS  Google Scholar 

  48. Bear, J. E., Krause, M., and Gertler, F. B. (2001), Regulating cellular actin assembly. Curr. Opin. Cell. Biol. 13(2), 158–166.

    Article  PubMed  CAS  Google Scholar 

  49. Hamada, K., et al. (2000), Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FEMR domain. EMBO J. 19(17), 4449–4462.

    Article  PubMed  CAS  Google Scholar 

  50. Harbeck, B., et al. (2000). Phosphorylation of the vasodilator-stimulated phosphoprotein regulates its interaction with actin. J. Biol. Chem. 275(40), 30,817–30,825.

    Article  CAS  Google Scholar 

  51. Wear, M. A., Schafer, D. A., and Cooper, J. A. (2000). Actin dynamics, assembly and disassembly of actin networks. Curr. Biol. 10(24), R891-R895.

    Article  PubMed  CAS  Google Scholar 

  52. Nakano, K., et al. (1999), Distinct actions and cooperative roles of ROCA and m Dia in rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol. Biol. Cell 10(8), 2481–2491.

    PubMed  CAS  Google Scholar 

  53. Vaiskunaite, R., et al. (2000), Conformational activation of radixin by G13 protein alpha subunit. J. Biol. Chem. 275(34), 26,206–26,212.

    Article  CAS  Google Scholar 

  54. Sun, H. Q., et al. (1999), Gelsolin, a multifunctional actin regulatory protein. J. Biol. Chem. 274(47), 33,179–33,182.

    CAS  Google Scholar 

  55. Hart, M. C., Korshunova, Y. O., and Cooper, J. A. (1997). Vertebrates have conserved capping protein alpha isoforms with specific expression patterns. Cell Motil. Cytoskelet. 38(2), 120–132.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Solway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dulin, N.O., Fernandes, D.J., Dowell, M. et al. What evidence implicates airway smooth muscle in the cause of BHR?. Clinic Rev Allerg Immunol 24, 73–84 (2003). https://doi.org/10.1385/CRIAI:24:1:73

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1385/CRIAI:24:1:73

Index Entries

Navigation