Skip to main content

Advertisement

Log in

ROS1 Receptor Tyrosine Kinase, a Druggable Target, is Frequently Overexpressed in Non-Small Cell Lung Carcinomas Via Genetic and Epigenetic Mechanisms

  • Thoracic Oncology
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Microarray analyses have revealed significantly elevated expression of the proto-oncogene ROS1 receptor tyrosine kinase in 20–30 % of non-small cell lung carcinomas (NSCLC). Selective and potent ROS1 kinase inhibitors have recently been developed and oncogenic rearrangement of ROS1 in NSCLC identified.

Methods

We performed immunohistochemical evaluation of expression of ROS1 kinase and its downstream molecules in 399 NSCLC cases. ROS1 expression in primary and recurring lesions of 92 recurrent NSCLC cases was additionally analyzed. To elucidate mechanism of expression, two ROS1-nonexpressing NSCLC cell lines (Calu6 and H358) and fresh frozen tissues from 28 consecutive NSCLC patients were examined for ROS1 promoter methylation status and ROS1 expression.

Results

Overall expression rate of ROS1 was 22 % (19 % for adenocarcinomas and 25 % for nonadenocarcinomas) in NSCLC. ROS1 expression was a worse prognostic factor for overall survival in adenocarcinomas of stage I NSCLC. In recurred NSCLC, ROS1 expression was significantly higher in recurring tumors (38 %) than primary tumors (19 %). Two NSCLC cell lines showed increased ROS1 expression after treatment with 5-aza-2′deoxycytidine and/or trichostatin A. Among the 14 adenocarcinomas examined, two (14 %) showed more than twice the level of ROS1 expression in tumor tissue than was observed in matched normal tissue and statistically significant differences in the ROS1 promoter methylation level.

Conclusions

A subset of NSCLC revealed overexpression of ROS1 receptor tyrosine kinase, possibly in relation to epigenetic changes. ROS1 expression was an independent prognostic factor for overall survival in adenocarcinomas of stage I NSCLC. Further studies are needed to validate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rikova K, Guo A, Zeng Q, et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell. 2007;131:1190–203.

    Article  PubMed  CAS  Google Scholar 

  2. Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta. 2009;1795:37–52.

    PubMed  CAS  Google Scholar 

  3. Birchmeier C, Sharma S, Wigler M. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc Natl Acad Sci USA. 1987;84:9270–4.

    Article  PubMed  CAS  Google Scholar 

  4. Mapstone T, McMichael M, Goldthwait D. Expression of platelet-derived growth factors, transforming growth factors, and the ros gene in a variety of primary human brain tumors. Neurosurgery. 1991;28:216–22.

    Article  PubMed  CAS  Google Scholar 

  5. Watkins D, Dion F, Poisson M, et al. Analysis of oncogene expression in primary human gliomas: evidence for increased expression of the ros oncogene. Cancer Genet Cytogenet. 1994;72:130–6.

    Article  PubMed  CAS  Google Scholar 

  6. Zhao JF, Sharma S. Expression of the ROS1 oncogene for tyrosine receptor kinase in adult human meningiomas. Cancer Genet Cytogenet. 1995;83:148–54.

    Article  PubMed  CAS  Google Scholar 

  7. Jun HJ, Woolfenden S, Coven S, et al. Epigenetic regulation of c-ROS receptor tyrosine kinase expression in malignant gliomas. Cancer Res. 2009;69:2180–4.

    Article  PubMed  CAS  Google Scholar 

  8. Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci USA. 2001;98:13790–5.

    Article  PubMed  CAS  Google Scholar 

  9. Garber ME, Troyanskaya OG, Schluens K, et al. Diversity of gene expression in adenocarcinoma of the lung. Proc Natl Acad Sci USA. 2001;98:13784–9.

    Article  PubMed  CAS  Google Scholar 

  10. Bild AH, Yao G, Chang JT, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439:353–7.

    Article  PubMed  CAS  Google Scholar 

  11. Alian G, Anthony P. Translocation and mutant ROS kinase in human non-small cell lung carcinoma. US Patent 0,298,404, 25 Nov 2010.

  12. Ting-Lei G, Alian G. Translocation and mutant ROS kinase in human non-small cell lung carcinoma. US Patent 0,221,737, 2 Sept 2010.

  13. Bergethon K, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–70.

    Article  PubMed  CAS  Google Scholar 

  14. Ellis L, Morgan DO, Jong SM, et al. Heterologous transmembrane signaling by a human insulin receptor-v-ros hybrid in Chinese hamster ovary cells. Proc Natl Acad Sci USA. 1987;84:5101–5.

    Article  PubMed  CAS  Google Scholar 

  15. Xiong Q, Chan JL, Zong CS, Wang LH. Two chimeric receptors of epidermal growth factor receptor and c-Ros that differ in their transmembrane domains have opposite effects on cell growth. Mol Cell Biol. 1996;16:1509–18.

    PubMed  CAS  Google Scholar 

  16. Riethmacher D, Langholz O, Godecke S, et al. Biochemical and functional characterization of the murine ros protooncogene. Oncogene. 1994;9:3617–26.

    PubMed  CAS  Google Scholar 

  17. Nguyen KT, Zong CS, Uttamsingh S, et al. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J Biol Chem. 2002;277:11107–15.

    Article  PubMed  CAS  Google Scholar 

  18. Zong CS, Zeng L, Jiang Y, et al. Stat3 plays an important role in oncogenic Ros- and insulin-like growth factor I receptor-induced anchorage-independent growth. J Biol Chem. 1998;273:28065–72.

    Article  PubMed  CAS  Google Scholar 

  19. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: signaling, migration, and invasion. Exp Cell Res. 2000;261:1–12.

    Article  PubMed  CAS  Google Scholar 

  20. Zeng L, Sachdev P, Yan L, et al. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol. 2000;20:9212–24.

    Article  PubMed  CAS  Google Scholar 

  21. El-Deeb IM, Yoo KH, Lee SH. ROS receptor tyrosine kinase: a new potential target for anticancer drugs. Med Res Rev 2011;31:794–818.

    Google Scholar 

  22. El-Deeb IM, Park BS, Jung SJ, et al. Design, synthesis, screening, and molecular modeling study of a new series of ROS1 receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett. 2009;19:5622–6.

    Article  PubMed  CAS  Google Scholar 

  23. Park BS, El-Deeb IM, Yoo KH, et al. Design, synthesis and biological evaluation of new potent and highly selective ROS1-tyrosine kinase inhibitor. Bioorg Med Chem Lett. 2009;19:4720–3.

    Article  PubMed  CAS  Google Scholar 

  24. Legare C, Sullivan R. Expression and localization of c-ros oncogene along the human excurrent duct. Mol Hum Reprod. 2004;10:697–703.

    Article  PubMed  CAS  Google Scholar 

  25. Charest A, Lane K, McMahon K, et al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer. 2003;37:58–71.

    Article  PubMed  CAS  Google Scholar 

  26. Gu TL, Deng X, Huang F, et al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS One. 2011;6:e15640.

    Article  PubMed  CAS  Google Scholar 

  27. De Smet C, De Backer O, Faraoni I, et al. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc Natl Acad Sci USA. 1996;93:7149–53.

    Article  PubMed  Google Scholar 

  28. Honda T, Tamura G, Waki T, et al. Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer. 2004;90:838–43.

    Article  PubMed  CAS  Google Scholar 

  29. Yanagawa N, Tamura G, Oizumi H, et al. MAGE expressions mediated by demethylation of MAGE promoters induce progression of non–small cell lung cancer. Anticancer Res. 2011;31:171–5.

    PubMed  CAS  Google Scholar 

  30. Wischnewski F, Pantel K, Schwarzenbach H. Promoter demethylation and histone acetylation mediate gene expression of MAGE-A1, -A2, -A3, and -A12 in human cancer cells. Mol Cancer Res. 2006;4:339–49.

    Article  PubMed  CAS  Google Scholar 

  31. Stoecklein NH, Klein CA. Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer. 2010;126:589–98.

    Article  PubMed  CAS  Google Scholar 

  32. Dupont Jensen J, Laenkholm AV, Knoop A, et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res. 2011;17:667–77.

    Article  PubMed  CAS  Google Scholar 

  33. McLendon R, Friedman A, Bigner D, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Supported in part by the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (0620330-1), and a Grant from the Asan Institute for Life Sciences (2009-353). KTORG supported this project as one of its collaborative projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se Jin Jang MD, PhD.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, H.J., Seol, H.S., Kim, J.Y. et al. ROS1 Receptor Tyrosine Kinase, a Druggable Target, is Frequently Overexpressed in Non-Small Cell Lung Carcinomas Via Genetic and Epigenetic Mechanisms. Ann Surg Oncol 20, 200–208 (2013). https://doi.org/10.1245/s10434-012-2553-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-012-2553-6

Keywords

Navigation