Semin Thromb Hemost 2002; 28(1): 45-52
DOI: 10.1055/s-2002-20559
Copyright © 2002 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA. Tel.: +1(212) 584-4662

Anticoagulants in Thrombosis and Cancer: The Missing Link

Shaker A. Mousa
  • Albany College of Pharmacy, Albany, New York
Further Information

Publication History

Publication Date:
05 March 2002 (online)

ABSTRACT

Many cancer patients reportedly have a hypercoagulable state, with recurrent thrombosis due to the impact of cancer cells and chemotherapy on the coagulation cascade. Studies have demonstrated that unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) interferes with various processes involved in tumor growth and metastasis. These processes might include fibrin formation, binding of heparin to angiogenic growth factors such as basic fibroblast growth factor and vascular endothelial growth factor, modulation of tissue factor, and other mechanisms. Clinical trials have indicated a clinically relevant effect of LMWH as compared with UFH on the survival of cancer patients with deep vein thrombosis. Similarly, the impact of warfarin on the survival of cancer patients with thromboembolic disorders was demonstrated. Recent studies from our laboratory defined the role of an LMWH (tinzaparin), warfarin, anti-factor VIIa, and recombinant tissue factor pathway inhibitor in the modulation of angiogenesis, tumor growth, and tumor metastasis.

REFERENCES

  • 1 Weitz J I. Low-molecular-weight heparin.  N Engl J Med . 1997;  337 688-698
  • 2 Aguilar D, Goldhaber S Z. Clinical uses of low molecular weight heparin.  Chest . 1999;  115 1418-1423
  • 3 Linhardt R J, Gunay N S. Production and chemical processing of low molecular weight heparins.  Semin Thromb Hemost . 1999;  25 5-16
  • 4 Mousa S A, Fareed J W. Advances in anticoagulant, antithrombotic and thrombolytic drugs.  Exp Opin Invest Drugs . 2001;  10 157-162
  • 5 Nader H B, Walenga J M, Berkowitz S D. Preclinical differentiation of low molecular weight heparins.  Semin Thromb Hemost . 1999;  25 63-72
  • 6 Mousa S A. Comparative efficacy among different low molecular weight heparins (LMWHs) and drug interaction: implications in the management of vascular disorders.  Thromb Haemost . 2000;  26(Suppl 1) 39-46
  • 7 Hull R D, Raskob G E, Pineo G F. Subcutaneous low-molecular weight heparin compared with continuous intravenous heparin in the treatment of proximal-vein thrombosis.  N Engl J Med . 1992;  326 975-982
  • 8 Simonneau G, Sors H, Charbonnier B. A comparison of low-molecular-weight heparin with unfractionated heparin for acute pulmonary embolism.  N Engl J Med . 1997;  337 663-669
  • 9 Hull R D, Raskob G E, Pineo G F. A comparison of subcutaneous low-molecular weight heparin with warfarin sodium for prophylaxis against deep-vein thrombosis after hip or knee implantation.  N Engl J Med . 1993;  329 1370-1376
  • 10 Leizorovicz A, Picolet H, Peyrieux J C, Boissel J P, and the HBPM research group. Prevention of perioperative deep vein thrombosis in general surgery: a multicenter double blind study comparing two doses of logiparin and standard heparin.  Br J Surg . 1991;  78 412-416
  • 11 Ryan K E, Lane D A, Flynn A. Dose finding study of a low molecular weight heparin, Innohep, in haemodialysis.  Thromb Haemost . 1991;  66 277-282
  • 12 Troy S, Fruncillo R, Ozawa T. Absolute and comparative subcutaneous bioavailability of ardeparin sodium, a low molecular weight heparin.  Thromb Haemost . 1997;  78 871-875
  • 13 Pedersen P C, ;cFstergaard P B, Hedner U, Bergqvist D, Mätzsch T. Pharmacokinetics of low molecular weight heparin, logiparin, after intravenous and subcutaneous administration to healthy volunteers.  Thromb Res . 1991;  61 477-487
  • 14 Mätzsch T, Bergqvist D, Hedner U, ;cFstergaard P B. Effects of an enzymatically depolymerized heparin as compared with conventional heparin in healthy volunteers.  Thromb Haemost . 1987;  57 97-101
  • 15 Bara L, Planes A, Samama M-M. Occurrence of thrombosis and haemorrhage, relationship with anti-Xa, anti-IIa activities, and D-dimer plasma levels in patients receiving low molecular weight heparin, enoxaparin or tinzaparin, to prevent deep vein thrombosis after hip surgery.  Br J Haematol . 1999;  104 230-240
  • 16 Emmanuele R M, Fareed J. The effect of molecular weight on the bioavailability of heparin.  Thromb Res . 1987;  48 591-596
  • 17 Brieger D, Dawes J. Production method affects the pharmacokinetic and ex vivo biological properties of low molecular weight heparins.  Thromb Haemost . 1997;  77 317-322
  • 18 Mousa S A, Bozarth J, Larnkjaer A, Johanson K. Vascular effects of heparin molecular weight fractions and LMWH on the release of TFPI from human endothelial cells.  Blood . 2000;  16 59,3928
  • 19 Mousa S A, Mohamed S. Anti-angiogenesis efficacy of the low molecular weight heparin (LMWH), tinzaparin and tissue factor pathway inhibitor (TFPI).  Blood . 1999;  94(Suppl 1) 22a,-22a, 82 Abst
  • 20 GoldbergRJ, Seneff M, Gore J M. Occult malignant neoplasm in patients with deep venous thrombosis.  Ann Intern Med . 1987;  147 251-253
  • 21 Baron J A, Gridley G, Weiderpass E, Nyren O, Linet M. Venous thromboembolism and cancer.  Lancet . 1998;  351 1077-1080
  • 22 Rickles F R, Edwards R L. Activation of blood coagulation in cancer: Trousseau's syndrome revisited.  Blood . 1982;  62 14-31
  • 23 Levine M N. Prevention of thrombotic disorders in cancer patients undergoing chemotherapy.  Thromb Haemost . 1997;  78 133-136
  • 24 Levine M N, Gent M, Hirsh J. The thrombogenic effect of anticancer drug therapy in women with stage II breast cancer.  N Engl J Med . 1998;  318 404-407
  • 25 Kakkar A J, De Ruvo N, Tebbutt S, Williamson R CN. Extrinsic pathway activation with elevated tissue factor and factor VIIa in patients with cancer.  Lancet . 1995;  346 1004-1005
  • 26 Kakkar A J, Williamson R C. Prevention of venous thromboembolism in cancer using low molecular weight heparin.  Haemostasis . 1997;  27(Suppl 1) 32-37
  • 27 Trousseau A. Plegmasia alba dolens. In: Baillier JB, ed. Clinique de l'Hotel-Dieu de Paris, 2nd ed 1865 3: 654-712
  • 28 Zacharski L R, Ornstein D L. Heparin and cancer.  Thromb Haemost . 1998;  80 10-23
  • 29 Gillis S, Dann E J, Eldor A. A low molecular weight heparin in the prophylaxis and treatment of disseminated intravascular coagulation in acute leukemia.  Eur J Haematol . 1995;  54 59-60
  • 30 Haward W. Phlebitis and thrombosis.  Lancet . 1960;  1 650-655
  • 31 Dvorak H F. Thrombosis and cancer.  Hum Pathol . 1987;  18 275-284
  • 32 Dvorak H F, Senger D R, Dvorak A M. Fibrin as a component of the tumor stroma: origins and biological significance.  Cancer Metastasis Rev . 1983;  2 41-73
  • 33 Falanga A. Mechanisms of hypercoagulation in malignancy and during chemotherapy.  Haemostasis . 1998;  28 50-55
  • 34 Mousa S A. Mechanisms of angiogenesis in vascular disorders: potential therapeutic targets. In: Mousa S, Landes RG, eds. Angiogenesis Inhibitors and Stimulators: Potential Therapeutic Implications Gorgtown, TX: Landes Bioscience 2000: 1-12
  • 35 Zhang H-T, Harris A L. Anti-angiogenic therapies in cancer clinical trials.  Exp Opin Invest Drugs . 1998;  7 1629-1655
  • 36 Mousa S A, Mohamed S, Smallheer J, Jadhav P K, Varner J. Anti-angiogenesis efficacy of small molecule a5b1 integrin antagonists, SJ749.  Blood . 1999;  94(Suppl 1) 620a,-620a, 2755 Abst
  • 37 Colman R W, Jameson B A, Lin Y, Mousa S A. Inhibition of angiogenesis by kininogen domain 5.  Blood . 2000;  95 543-550
  • 38 Mousa S A, Mohamed S. Anti-angiogenesis efficacy of the low molecular weight heparin (LMWH) tinzaparin and tissue factor pathway inhibitor (TFPI).  Blood . 1999;  94(Suppl 1) 22a,-22a, 82-I Abst
  • 39 Browder T, Folkman J, Pirie-Shepherd S. The hemostasis system as a regulator of angiogenesis.  J Biol Chem . 2000;  275 1521-1524
  • 40 Brooks P C, Clark R AF, Cheresh D A. Requirement of vascular integrin αvβ3 for angiogenesis.  Science . 1994;  264 569-571
  • 41 Bell W R. The fibrinolytic system in neoplasia.  Semin Thromb Haemost . 1996;  22 459-478
  • 42 Ruf W, Mueller B M. Tissue factor in cancer angiogenesis and metastasis.  Curr Opin Hematol . 1996;  3 379-384
  • 43 Shoji M, Hancock W W, Abe K. Activation of coagulation and angiogenesis in cancer: immunohistochemical localization in situ of clotting proteins and VEGF in human cancer.  Am J Pathol . 1998;  152 399-411
  • 44 Mousa S A, Mohamed S. Anti-angiogenesis efficacy and anti-tumor effects of warfarin: potential mechanisms.  FASEB . 2001;  15 A118,-A118, 149
  • 45 Amirkhosravi A, Francis J, Mousa S A. Anti-metastatic effect of low molecular weight heparin (LMWH) tinzaparin and tissue factor pathway inhibitor (TFPI).  Thromb Haemost . 2001;  Suppl P1409-P1409 Abst
  • 46 Maloney J P, Silliman C C, Ambruso D R. In vitro release of VEGF during platelet aggregation.  Am J Physiol . 1998;  275 H1054-H1061
  • 47 Francis J L. Haemostasis and cancer.  Med Lab Sci . 1989;  46 331-346
  • 48 Brower V. Tumor angiogenesis-new drugs on the block.  Nature Biotechnol . 1999;  17 963-968
  • 49 Paku S. Current concepts of tumor-induced angiogenesis.  Pathol Oncol Res . 1998;  4 62-75
  • 50 Hassan A R, Hing Y K, Catey B. Adjuvant 5-fluorouracil and heparin prevents proliferative vitreoretinopathy: results from a randomized, double-blind, controlled clinical trial.  Ophthalmology . 2001;  108 1179-1183
  • 51 Osman K, Comenzo R, Rajkumar S V. Deep vein thrombosis and thalidomide therapy for multiple myeloma.  N Engl J Med . 2001;  344 1951-1952
    >