Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture

Abstract

Recent studies describe beneficial effects of bone marrow-derived mesenchymal stem cell infusion in animal models as well as in patients. However, data on the homing abilities of primary and culture-expanded MSC are lacking. In order to systematically investigate MSC homing we compared the fate of both primary and cultured MSC in a syngeneic mouse model. Twenty-four hours after transplantation of uncultured EGFP-transgenic MSC into sublethally irradiated mice, as many as 55–65% of injected CFU-F were recovered from the BM and 3.5–7% from the spleen. In the subsequent 4 weeks these donor CFU-F expanded 100-fold, which resulted in a normalization of femoral and splenic CFU-F numbers. This highly efficient homing of primary CFU-F contrasted with the defective homing of MSC following culture. Following their infusion immortalized multipotent syngeneic stromal cells were undetectable in BM, spleen, lymph nodes or thymus. Remarkably, following transplantation of primary MSC that had been cultured for only 24 h the seeding fraction in the BM was reduced to 10%, while after transplantation of 48 h cultured primary MSC no CFU-F were detected in the lymphohematopoietic organs. These data suggest that in vitro propagation of BM-derived MSC dramatically decreases their homing to BM and spleen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Almeida-Porada, G, Porada, CD, Tran, N & Zanjani, ED Cotransplantation of human stromal cell progenitors into preimmune fetal sheep results in early appearance of human donor cells in circulation and boosts cell levels in bone marrow at later time points after transplantation. Blood, (2000). 95, 3620–3627.

    CAS  Google Scholar 

  2. Beresford, JN, Bennett, JH, Devlin, C, Leboy, PS & Owen, ME Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci, (1992). 102, 341–351.

    CAS  PubMed  Google Scholar 

  3. Cheng, L, Qasba, P, Vanguri, P & Thiede, MA Human mesenchymal stem cells support megakaryocyte and pro-platelet formation from CD34(+) hematopoietic progenitor cells. J Cell Physiol, (2000). 184, 58–69.

    Article  CAS  Google Scholar 

  4. Dennis, JE, Merriam, A, Awadallah, A, Yoo, JU, Johnstone, B & Caplan, AI A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res, (1999). 14, 700–709.

    Article  CAS  Google Scholar 

  5. Haynesworth, SE, Goshima, J, Goldberg, VM & Caplan, AI Characterization of cells with osteogenic potential from human marrow. Bone, (1992). 13, 81–88.

    Article  CAS  Google Scholar 

  6. Johnstone, B, Hering, TM, Caplan, AI, Goldberg, VM & Yoo, JU In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res, (1998). 238, 265–272.

    Article  CAS  Google Scholar 

  7. Young, RG, Butler, DL, Weber, W, Caplan, AI, Gordon, SL & Fink, DJ Use of mesenchymal stem cells in a collagen matrix for Achilles tendon repair. J Orthop Res, (1998). 16, 406–413.

    Article  CAS  Google Scholar 

  8. Caplan, AI Mesenchymal stem cells. J Orthop Res, (1991). 9, 641–650.

    Article  CAS  Google Scholar 

  9. Prockop, DJ Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, (1997). 276, 71–74.

    Article  CAS  Google Scholar 

  10. Friedenstein, AJ, Deriglasova, UF, Kulagina, NN, Panasuk, AF, Rudakowa, SF, Luria, EA & Ruadkow, IA Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol, (1974). 2, 83–92.

    CAS  PubMed  Google Scholar 

  11. Liechty, KW, MacKenzie, TC, Shaaban, AF, Radu, A, Moseley, AM, Deans, R, Marshak, DR & Flake, AW Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, (2000). 6, 1282–1286.

    Article  CAS  Google Scholar 

  12. Pereira, RF, Halford, KW, O’Hara, MD, Leeper, DB, Sokolov, BP, Pollard, MD, Bagasra, O & Prockop, DJ Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci USA, (1995). 92, 4857–4861.

    Article  CAS  Google Scholar 

  13. Horwitz, EM, Prockop, DJ, Fitzpatrick, LA, Koo, WW, Gordon, PL, Neel, M, Sussman, M, Orchard, P, Marx, JC, Pyeritz, RE & Brenner, MK Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med, (1999). 5, 309–313.

    Article  CAS  Google Scholar 

  14. Horwitz, EM, Prockop, DJ, Gordon, PL, Koo, WW, Fitzpatrick, LA, Neel, MD, McCarville, ME, Orchard, PJ, Pyeritz, RE & Brenner, MK Clinical responses to bone marrow transplantation in children with severe osteogenesis imperfecta. Blood, (2001). 97, 1227–1231.

    Article  CAS  Google Scholar 

  15. Azizi, SA, Stokes, D, Augelli, BJ, DiGirolamo, C & Prockop, DJ Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats – similarities to astrocyte grafts. Proc Natl Acad Sci USA, (1998). 95, 3908–3913.

    Article  CAS  Google Scholar 

  16. Orlic, D, Kajstura, J, Chimenti, S, Jakoniuk, I, Anderson, SM, Li, B, Pickel, J, McKay, R, Nadal-Ginard, B, Bodine, DM, Leri, A & Anversa, P Bone marrow cells regenerate infarcted myocardium. Nature, (2001). 410, 701–705.

    Article  CAS  Google Scholar 

  17. Almeida-Porada, G, Flake, AW, Glimp, HA & Zanjani, ED Cotransplantation of stroma results in enhancement of engraftment and early expression of donor hematopoietic stem cells in utero. Exp Hematol, (1999). 27, 1569–1575.

    Article  CAS  Google Scholar 

  18. Fibbe, WE, Noort, WA, Schipper, F & Willemze, R Ex vivo expansion and engraftment potential of cord blood-derived CD34+ cells in NOD/SCID mice. Ann NY Acad Sci, (2001). 938, 9–17.

    Article  CAS  Google Scholar 

  19. Agematsu, K & Nakahori, Y Recipient origin of bone marrow-derived fibroblastic stromal cells during all periods following bone marrow transplantation in humans. Br J Haematol, (1991). 79, 359–365.

    Article  CAS  Google Scholar 

  20. Laver, J, Jhanwar, SC, O’Reilly, RJ & Castro-Malaspina, H Host origin of the human hematopoietic microenvironment following allogeneic bone marrow transplantation. Blood, (1987). 70, 1966–1968.

    CAS  PubMed  Google Scholar 

  21. Koc, ON, Peters, C, Aubourg, P, Raghavan, S, Dyhouse, S, DeGasperi, R, Kolodny, EH, Yoseph, YB, Gerson, SL, Lazarus, HM, Caplan, AI, Watkins, PA & Krivit, W Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol, (1999). 27, 1675–1681.

    Article  CAS  Google Scholar 

  22. Simmons, PJ, Przepiorka, D, Thomas, ED & Torok-Storb, B Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature, (1987). 328, 429–432.

    Article  CAS  Google Scholar 

  23. Cilloni, D, Carlo-Stella, C, Falzetti, F, Sammarelli, G, Regazzi, E, Colla, S, Rizzoli, V, Aversa, F, Martelli, MF & Tabilio, A Limited engraftment capacity of bone marrow-derived mesenchymal cells following T-cell-depleted hematopoietic stem cell transplantation. Blood, (2000). 96, 3637–3643.

    CAS  Google Scholar 

  24. Tanaka, J, Kasai, M, Imamura, M, Masauzi, N, Ohizumi, H, Matsuura, A, Morii, K, Kiyama, Y, Naohara, T, Saitoh, M, Higa, T, Sakurada, K & Miyazaki, T Evaluation of mixed chimaerism and origin of bone marrow derived fibroblastoid cells after allogeneic bone marrow transplantation. Br J Haematol, (1994). 86, 436–438.

    Article  CAS  Google Scholar 

  25. Piersma, AH, Ploemacher, RE & Brockbank, KG Radiation damage to femoral hemopoietic stroma measured by implant regeneration and quantitation of fibroblastic progenitors. Exp Hematol, (1983). 11, 884–890.

    CAS  Google Scholar 

  26. Keating, A, Singer, JW, Killen, PD, Striker, GE, Salo, AC, Sanders, J, Thomas, ED, Thorning, D & Fialkow, PJ Donor origin of the in vitro haematopoietic microenvironment after marrow transplantation in man. Nature, (1982). 298, 280–283.

    Article  CAS  Google Scholar 

  27. Golde, DW, Hocking, WG, Quan, SG, Sparkes, RS & Gale, RP Origin of human bone marrow fibroblasts. Br J Haematol, (1980). 44, 183–187.

    Article  CAS  Google Scholar 

  28. Friedenstein, AJ, Ivanov-Smolenski, AA, Chajlakjan, RK, Gorskaya, UF, Kuralesova, AI, Latzinik, NW & Gerasimow, UW Origin of bone marrow stromal mechanocytes in radiochimeras and heterotopic transplants. Exp Hematol, (1978). 6, 440–444.

    CAS  PubMed  Google Scholar 

  29. Wilson, FD, Konrad, PN, Greenberg, BR, Klein, AK & Walling, PA Cytogenetic studies on bone marrow fibroblasts from a male-female hematopoietic chimera. Evidence that stromal elements in human transplantation recipients are of host type. Transplantation, (1978). 25, 87–88.

    Article  CAS  Google Scholar 

  30. Hou, Z, Nguyen, Q, Frenkel, B, Nilsson, SK, Milne, M, van Wijnen, AJ, Stein, JL, Quesenberry, P, Lian, JB & Stein, GS Osteoblast-specific gene expression after transplantation of marrow cells: implications for skeletal gene therapy. Proc Natl Acad Sci USA, (1999). 96, 7294–7299.

    Article  CAS  Google Scholar 

  31. Pereira, RF, O’Hara, MD, Laptev, AV, Halford, KW, Pollard, MD, Class, R, Simon, D, Livezey, K & Prockop, DJ Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA, (1998). 95, 1142–1147.

    Article  CAS  Google Scholar 

  32. Brouard, N, Chapel, A, Thierry, D, Charbord, P & Peault, B Transplantation of gene-modified human bone marrow stromal cells into mouse-human bone chimeras. J Hematother Stem Cell Res, (2000). 9, 175–181.

    Article  CAS  Google Scholar 

  33. Bierhuizen, MF, Westerman, Y, Visser, TP, Wognum, AW & Wagemaker, G Green fluorescent protein variants as markers of retroviral-mediated gene transfer in primary hematopoietic cells and cell lines. Biochem Biophys Res Commun, (1997). 234, 371–375.

    Article  CAS  Google Scholar 

  34. Moritz, T, Dutt, P, Xiao, X, Carstanjen, D, Vik, T, Hanenberg, H & Williams, DA Fibronectin improves transduction of reconstituting hematopoietic stem cells by retroviral vectors: evidence of direct viral binding to chymotryptic carboxy-terminal fragments. Blood, (1996). 88, 855–862.

    CAS  PubMed  Google Scholar 

  35. Brockbank, KG, Ploemacher, RE & van Peer, CM An in vitro analysis of murine hemopoietic fibroblastoid progenitors and fibroblastoid cell function during aging. Mech Ageing Dev, (1983). 22, 11–21.

    Article  CAS  Google Scholar 

  36. Phinney, DG, Kopen, G, Isaacson, RL & Prockop, DJ Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation. J Cell Biochem, (1999). 72, 570–585.

    Article  CAS  Google Scholar 

  37. Quarto, R, Mastrogiacomo, M, Cancedda, R, Kutepov, SM, Mukhachev, V, Lavroukov, A, Kon, E & Marcacci, M Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med, (2001). 344, 385–386.

    Article  CAS  Google Scholar 

  38. Nikkels, PG, de Jong, JP & Ploemacher, RE Radiation sensitivity of hemopoietic stroma: long-term partial recovery of hemopoietic stromal damage in mice treated during growth. Radiat Res, (1987). 109, 330–341.

    Article  CAS  Google Scholar 

  39. Barry, FP, Boynton, RE, Haynesworth, S, Murphy, JM & Zaia, J The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem Biophys Res Commun, (1999). 265, 134–139.

    Article  CAS  Google Scholar 

  40. Haynesworth, SE, Baber, MA & Caplan, AI Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone, (1992). 13, 69–80.

    Article  CAS  Google Scholar 

  41. Lahiri, SK, Keizer, HJ & van Putten, LM The efficiency of the assay for heamopoietic colony forming cells. Cell Tissue Kinet, (1970). 3, 355–362.

    CAS  PubMed  Google Scholar 

  42. Vos, O, Luiten, F & Ploemache, RE Lodging of CFU-S under various circumstances in bone marrow, spleen and liver. Exp Hematol, (1980). 8, 960–966.

    Google Scholar 

  43. Piersma, AH, Ploemacher, RE & Brockbank, KG Transplantation of bone marrow fibroblastoid stromal cells in mice via the intravenous route. Br J Haematol, (1983). 54, 285–290.

    Article  CAS  Google Scholar 

  44. Piersma, AH, Brockbank, KG, Ploemacher, RE & Ottenheim, CP Recovery of hemopoietic stromal progenitor cells after lethal total-body irradiation and bone marrow transplantation in mice. Transplantation, (1985). 40, 198–201.

    Article  CAS  Google Scholar 

  45. Piersma, AH, Brockbank, KG, Ploemacher, RE, van Vliet, E, Brakel-van Peer, KM & Visser, PJ Characterization of fibroblastic stromal cells from murine bone marrow. Exp Hematol, (1985). 13, 237–243.

    CAS  PubMed  Google Scholar 

  46. Devine, SM & Hoffman, R Role of mesenchymal stem cells in hematopoietic stem cell transplantation. Curr Opin Hematol, (2000). 7, 358–363.

    Article  CAS  Google Scholar 

  47. Hurwitz, DR, Kirchgesser, M, Merrill, W, Galanopoulos, T, McGrath, CA, Emami, S, Hansen, M, Cherington, V, Appel, JM, Bizinkauskas, CB, Brackmann, HH, Levine, PH & Greenberger, JS Systemic delivery of human growth hormone or human factor IX in dogs by reintroduced genetically modified autologous bone marrow stromal cells. Hum Gene Ther, (1997). 8, 137–156.

    Article  CAS  Google Scholar 

  48. Gao, J, Dennis, JE, Muzic, RF, Lundberg, M & Caplan, AI The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs, (2001). 169, 12–20.

    Article  CAS  Google Scholar 

  49. van der Loo, JC & Ploemacher, RE Marrow- and spleen-seeding efficiencies of all murine hematopoietic stem cell subsets are decreased by preincubation with hematopoietic growth factors. Blood, (1995). 85, 2598–2606.

    CAS  Google Scholar 

  50. Szilvassy, SJ, Bass, MJ, Van Zant, G & Grimes, B Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by ex vivo expansion. Blood, (1999). 93, 1557–1566.

    CAS  PubMed  Google Scholar 

  51. Glimm, H, Oh, IH & Eaves, CJ Human hematopoietic stem cells stimulated to proliferate in vitro lose engraftment potential during their S/G(2)/M transit and do not reenter G(0). Blood, (2000). 96, 4185–4193.

    CAS  Google Scholar 

  52. Berrios, VM, Dooner, GJ, Nowakowski, G, Frimberger, A, Valinski, H, Quesenberry, PJ & Becker, PS The molecular basis for the cytokine-induced defect in homing and engraftment of hematopoietic stem cells. Exp Hematol, (2001). 29, 1326–1335.

    Article  CAS  Google Scholar 

  53. Ramirez, M, Segovia, JC, Benet, I, Arbona, C, Guenechea, G, Blaya, C, Garcia-Conde, J, Bueren, JA & Prosper, F Ex vivo expansion of umbilical cord blood (UCB) CD34(+) cells alters the expression and function of alpha 4 beta 1 and alpha 5 beta 1 integrins. Br J Haematol, (2001). 115, 213–221.

    Article  CAS  Google Scholar 

  54. Conget, PA & Minguell, JJ Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, (1999). 181, 67–73.

    Article  CAS  Google Scholar 

  55. Wagers, AJ, Allsopp, RC & Weissman, IL Changes in integrin expression are associated with altered homing properties of Lin([minus sign]/lo)Thy1.1(lo)Sca-1(+)c-kit(+) hematopoietic stem cells following mobilization by cyclophosphamide/granulocyte colony-stimulating factor. Exp Hematol, (2002). 30, 176–185.

    Article  CAS  Google Scholar 

  56. Nilsson, SK, Dooner, MS & Quesenberry, PJ Synchronized cell-cycle induction of engrafting long-term repopulating stem cells. Blood, (1997). 90, 4646–4650.

    CAS  PubMed  Google Scholar 

  57. Jetmore, A, Plett, PA, Tong, X, Wolber, FM, Breese, R, Abonour, R, Orschell-Traycoff, CM & Srour, EF Homing efficiency, cell cycle kinetics, and survival of quiescent and cycling human CD34(+) cells transplanted into conditioned NOD/SCID recipients. Blood, (2002). 99, 1585–1593.

    Article  CAS  Google Scholar 

  58. Gothot, A, van der Loo, JC, Clapp, DW & Srour, EF Cell cycle-related changes in repopulating capacity of human mobilized peripheral blood CD34(+) cells in non-obese diabetic/severe combined immune-deficient mice. Blood, (1998). 92, 2641–2649.

    CAS  Google Scholar 

  59. Colter, DC, Class, R, DiGirolamo, CM & Prockop, DJ Rapid expansion of recycling stem cells in cultures of plastic-adherent cells from human bone marrow. Proc Natl Acad Sci USA, (2000). 97, 3213–3218.

    Article  CAS  Google Scholar 

  60. Kuznetsov, S & Gehron Robey, P Species differences in growth requirements for bone marrow stromal fibroblast colony formation in vitro. Calcif Tissue Int, (1996). 59, 265–270.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rombouts, W., Ploemacher, R. Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17, 160–170 (2003). https://doi.org/10.1038/sj.leu.2402763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402763

Keywords

This article is cited by

Search

Quick links