Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells

Abstract

Mucins (MUC) are high molecular weight O-linked glycoproteins whose primary functions are to hydrate, protect, and lubricate the epithelial luminal surfaces of the ducts within the human body. The MUC family is comprised of large secreted gel forming and transmembrane (TM) mucins. MUC1, MUC4, and MUC16 are the well-characterized TM mucins and have been shown to be aberrantly overexpressed in various malignancies including cystic fibrosis, asthma, and cancer. Recent studies have uncovered the unique roles of these mucins in the pathogenesis of cancer. These mucins possess specific domains that can make complex associations with various signaling pathways, impacting cell survival through alterations of cell growth, proliferation, death, and autophagy. The cytoplasmic domain of MUC1 serves as a scaffold for interaction with various signaling proteins. On the other hand, MUC4 mediates its effect by stabilizing and enhancing the activity of growth factor receptor ErbB2. MUC16, previously known as CA125, is a well-known serum marker for the diagnosis of ovarian cancer and has a key role in stimulation and dissemination of ovarian cancer cells by interacting with mesothelin and galectin. Therefore, herein we discuss the function and divergent mechanisms of MUC1, MUC4, and MUC16 in carcinogenesis in the context of alteration in cell growth and survival.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agata N, Ahmad R, Kawano T, Raina D, Kharbanda S, Kufe D . (2008). MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res 68: 6136–6144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad R, Raina D, Trivedi V, Ren J, Rajabi H, Kharbanda S et al. (2007). MUC1 oncoprotein activates the IkappaB kinase beta complex and constitutive NF-kappaB signalling. Nat Cell Biol 9: 1419–1427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrianifahanana M, Moniaux N, Schmied BM, Ringel J, Friess H, Hollingsworth MA et al. (2001). Mucin (MUC) gene expression in human pancreatic adenocarcinoma and chronic pancreatitis: a potential role of MUC4 as a tumor marker of diagnostic significance. Clin Cancer Res 7: 4033–4040.

    CAS  PubMed  Google Scholar 

  • Arango ME, Li P, Komatsu M, Montes C, Carraway CA, Carraway KL . (2001). Production and localization of Muc4/sialomucin complex and its receptor tyrosine kinase ErbB2 in the rat lacrimal gland. Invest Ophthalmol Vis Sci 42: 2749–2756.

    CAS  PubMed  Google Scholar 

  • Argueso P, Spurr-Michaud S, Russo CL, Tisdale A, Gipson IK . (2003). MUC16 mucin is expressed by the human ocular surface epithelia and carries the H185 carbohydrate epitope. Invest Ophthalmol Vis Sci 44: 2487–2495.

    PubMed  Google Scholar 

  • Aubert S, Fauquette V, Hemon B, Lepoivre R, Briez N, Bernard D et al. (2009). MUC1, a new hypoxia inducible factor target gene, is an actor in clear renal cell carcinoma tumor progression. Cancer Res 69: 5707–5715.

    CAS  PubMed  Google Scholar 

  • Bafna S, Kaur S, Momi N, Batra SK . (2009). Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin. Br J Cancer 101: 1155–1161.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bafna S, Singh AP, Moniaux N, Eudy JD, Meza JL, Batra SK . (2008). MUC4, a multifunctional transmembrane glycoprotein, induces oncogenic transformation of NIH3T3 mouse fibroblast cells. Cancer Res 68: 9231–9238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bast Jr RC, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB . (1998). CA 125: the past and the future. Int J Biol Markers 13: 179–187.

    CAS  PubMed  Google Scholar 

  • Bitler BG, Menzl I, Huerta CL, Sands B, Knowlton W, Chang A et al. (2009). Intracellular MUC1 peptides inhibit cancer progression. Clin Cancer Res 15: 100–109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blalock TD, Spurr-Michaud SJ, Tisdale AS, Heimer SR, Gilmore MS, Ramesh V et al. (2007). Functions of MUC16 in corneal epithelial cells. Invest Ophthalmol Vis Sci 48: 4509–4518.

    PubMed  Google Scholar 

  • Boivin M, Lane D, Piche A, Rancourt C . (2009). CA125 (MUC16) tumor antigen selectively modulates the sensitivity of ovarian cancer cells to genotoxic drug-induced apoptosis. Gynecol Oncol 115: 407–413.

    CAS  PubMed  Google Scholar 

  • Buisine MP, Desreumaux P, Leteurtre E, Copin MC, Colombel JF, Porchet N et al. (2001). Mucin gene expression in intestinal epithelial cells in Crohn's disease. Gut 49: 544–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Capstick V, Maclean GD, Suresh MR, Bodnar D, Lloyd S, Shepert L et al. (1991). Clinical evaluation of a new two-site assay for CA125 antigen. Int J Biol Markers 6: 129–135.

    CAS  PubMed  Google Scholar 

  • Carraway III KL, Funes M, Workman HC, Sweeney C . (2007). Contribution of membrane mucins to tumor progression through modulation of cellular growth signaling pathways. Curr Top Dev Biol 78: 1–22.

    CAS  PubMed  Google Scholar 

  • Carraway KL, Perez A, Idris N, Jepson S, Arango M, Komatsu M et al. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, in cancer and epithelia: to protect and to survive. Prog Nucleic Acid Res Mol Biol 71: 149–185.

    CAS  PubMed  Google Scholar 

  • Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y . (2000). p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J 19: 4967–4975.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi P, Singh AP, Batra SK . (2008a). Structure, evolution, and biology of the MUC4 mucin. FASEB J 22: 966–981.

    CAS  PubMed  Google Scholar 

  • Chaturvedi P, Singh AP, Chakraborty S, Chauhan SC, Bafna S, Meza JL et al. (2008b). MUC4 mucin interacts with and stabilizes the HER2 oncoprotein in human pancreatic cancer cells. Cancer Res 68: 2065–2070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi P, Singh AP, Moniaux N, Senapati S, Chakraborty S, Meza JL et al. (2007). MUC4 mucin potentiates pancreatic tumor cell proliferation, survival, and invasive properties and interferes with its interaction to extracellular matrix proteins. Mol Cancer Res 5: 309–320.

    CAS  PubMed  Google Scholar 

  • Chauhan SC, Vannatta K, Ebeling MC, Vinayek N, Watanabe A, Pandey KK et al. (2009). Expression and functions of transmembrane mucin MUC13 in ovarian cancer. Cancer Res 69: 765–774.

    CAS  PubMed  Google Scholar 

  • Copin MC, Buisine MP, Leteurtre E, Marquette CH, Porte H, Aubert JP et al. (2001). Mucinous bronchioloalveolar carcinomas display a specific pattern of mucin gene expression among primary lung adenocarcinomas. Hum Pathol 32: 274–281.

    CAS  PubMed  Google Scholar 

  • Corfield AP, Carroll D, Myerscough N, Probert CS . (2001). Mucins in the gastrointestinal tract in health and disease. Front Biosci 6: D1321–D1357.

    CAS  PubMed  Google Scholar 

  • Croce CM . (2008). Oncogenes and cancer. N Engl J Med 358: 502–511.

    CAS  PubMed  Google Scholar 

  • Davidson B, Baekelandt M, Shih I . (2007). MUC4 is upregulated in ovarian carcinoma effusions and differentiates carcinoma cells from mesothelial cells. Diagn Cytopathol 35: 756–760.

    PubMed  Google Scholar 

  • Gendler SJ . (2001). MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 6: 339–353.

    CAS  PubMed  Google Scholar 

  • Gipson IK . (2005). Human endocervical mucins. Ernst Schering Res Found Workshop 52: 219–244.

    CAS  Google Scholar 

  • Gubbels JA, Belisle J, Onda M, Rancourt C, Migneault M, Ho M et al. (2006). Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol Cancer 5: 50.

    PubMed  PubMed Central  Google Scholar 

  • Gubbels JA, Felder M, Horibata S, Belisle JA, Kapur A, Holden H et al. (2010). MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol Cancer 9: 11.

    PubMed  PubMed Central  Google Scholar 

  • Hait WN, Jin S, Yang JM . (2006). A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res 12: 1961–1965.

    CAS  PubMed  Google Scholar 

  • Hanaoka J, Kontani K, Sawai S, Ichinose M, Tezuka N, Inoue S et al. (2001). Analysis of MUC4 mucin expression in lung carcinoma cells and its immunogenicity. Cancer 92: 2148–2157.

    CAS  PubMed  Google Scholar 

  • Hattrup CL, Gendler SJ . (2006). MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Res 8: R37.

    PubMed  PubMed Central  Google Scholar 

  • Hattrup CL, Gendler SJ . (2008). Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70: 431–457.

    CAS  PubMed  Google Scholar 

  • Higuchi T, Orita T, Katsuya K, Yamasaki Y, Akiyama K, Li H et al. (2004a). MUC20 suppresses the hepatocyte growth factor-induced Grb2-Ras pathway by binding to a multifunctional docking site of met. Mol Cell Biol 24: 7456–7468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi T, Orita T, Nakanishi S, Katsuya K, Watanabe H, Yamasaki Y et al. (2004b). Molecular cloning, genomic structure, and expression analysis of MUC20, a novel mucin protein, up-regulated in injured kidney. J Biol Chem 279: 1968–1979.

    CAS  PubMed  Google Scholar 

  • Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas III CF, Hynes NE . (2003). The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci USA 100: 8933–8938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holbro T, Hynes NE . (2004). ErbB receptors: directing key signaling networks throughout life. Annu Rev Pharmacol Toxicol 44: 195–217.

    CAS  PubMed  Google Scholar 

  • Hollingsworth MA, Swanson BJ . (2004). Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer 4: 45–60.

    CAS  PubMed  Google Scholar 

  • Horowitz JC, Lee DY, Waghray M, Keshamouni VG, Thomas PE, Zhang H et al. (2004). Activation of the pro-survival phosphatidylinositol 3-kinase/AKT pathway by transforming growth factor-beta1 in mesenchymal cells is mediated by p38 MAPK-dependent induction of an autocrine growth factor. J Biol Chem 279: 1359–1367.

    CAS  PubMed  Google Scholar 

  • Hu YP, Haq B, Carraway KL, Savaraj N, Lampidis TJ . (2003). Multidrug resistance correlates with overexpression of Muc4 but inversely with P-glycoprotein and multidrug resistance related protein in transfected human melanoma cells. Biochem Pharmacol 65: 1419–1425.

    CAS  PubMed  Google Scholar 

  • Huang L, Chen D, Liu D, Yin L, Kharbanda S, Kufe D . (2005). MUC1 oncoprotein blocks glycogen synthase kinase 3beta-mediated phosphorylation and degradation of beta-catenin. Cancer Res 65: 10413–10422.

    CAS  PubMed  Google Scholar 

  • Hynes NE, Lane HA . (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5: 341–354.

    CAS  PubMed  Google Scholar 

  • Itoh Y, Kamata-Sakurai M, da-Nagai K, Nagai S, Tsuiji M, Ishii-Schrade K et al. (2008). Identification and expression of human epiglycanin/MUC21: a novel transmembrane mucin. Glycobiology 18: 74–83.

    CAS  PubMed  Google Scholar 

  • Jepson S, Komatsu M, Haq B, Arango ME, Huang D, Carraway CA et al. (2002). Muc4/sialomucin complex, the intramembrane ErbB2 ligand, induces specific phosphorylation of ErbB2 and enhances expression of p27(kip), but does not activate mitogen-activated kinase or protein kinaseB/Akt pathways. Oncogene 21: 7524–7532.

    CAS  PubMed  Google Scholar 

  • Kawano T, Ahmad R, Nogi H, Agata N, Anderson K, Kufe D . (2008). MUC1 oncoprotein promotes growth and survival of human multiple myeloma cells. Int J Oncol 33: 153–159.

    CAS  PubMed  Google Scholar 

  • Kharbanda S, Pandey P, Ren R, Mayer B, Zon L, Kufe D . (1995a). c-Abl activation regulates induction of the SEK1/stress-activated protein kinase pathway in the cellular response to 1-beta-D-arabinofuranosylcytosine. J Biol Chem 270: 30278–30281.

    CAS  PubMed  Google Scholar 

  • Kharbanda S, Ren R, Pandey P, Shafman TD, Feller SM, Weichselbaum RR et al. (1995b). Activation of the c-Abl tyrosine kinase in the stress response to DNA-damaging agents. Nature 376: 785–788.

    CAS  PubMed  Google Scholar 

  • Komatsu M, Jepson S, Arango ME, Carothers Carraway CA, Carraway KL . (2001). Muc4/sialomucin complex, an intramembrane modulator of ErbB2/HER2/Neu, potentiates primary tumor growth and suppresses apoptosis in a xenotransplanted tumor. Oncogene 20: 461–470.

    CAS  PubMed  Google Scholar 

  • Kui WN, Easton RL, Panico M, Sutton-Smith M, Morrison JC, Lattanzio FA et al. (2003). Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J Biol Chem 278: 28619–28634.

    Google Scholar 

  • Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA . (1990). Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 265: 15294–15299.

    CAS  PubMed  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    CAS  PubMed  Google Scholar 

  • Li GS, Zhang H, Lu JC, Hou P, Zhou Y, Ma XZ et al. (2005). Variable number of tandem repeats polymorphism of MUC20 is associated with the progression of IgA nephropathy. Zhonghua Yi Xue Za Zhi 85: 1333–1338.

    CAS  PubMed  Google Scholar 

  • Li Y, Liu D, Chen D, Kharbanda S, Kufe D . (2003). Human DF3/MUC1 carcinoma-associated protein functions as an oncogene. Oncogene 22: 6107–6110.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L et al. (2001). The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem 276: 35239–35242.

    CAS  PubMed  Google Scholar 

  • Mall AS . (2008). Analysis of mucins: role in laboratory diagnosis. J Clin Pathol 61: 1018–1024.

    CAS  PubMed  Google Scholar 

  • Malmberg EK, Pelaseyed T, Petersson AC, Seidler UE, De JH, Riordan JR et al. (2008). The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine. Biochem J 410: 283–289.

    CAS  PubMed  Google Scholar 

  • Matsuoka Y, Endo K, Kawamura Y, Yoshida T, Saga T, Watanabe Y et al. (1990). Normal bronchial mucus contains high levels of cancer-associated antigens, CA125, CA19-9, and carcinoembryonic antigen. Cancer 65: 506–510.

    CAS  PubMed  Google Scholar 

  • Meerzaman D, Shapiro PS, Kim KC . (2001). Involvement of the MAP kinase ERK2 in MUC1 mucin signaling. Am J Physiol Lung Cell Mol Physiol 281: L86–L91.

    CAS  PubMed  Google Scholar 

  • Moniaux N, Chaturvedi P, Varshney GC, Meza JL, Rodriguez-Sierra JF, Aubert JP et al. (2007). Human MUC4 mucin induces ultra-structural changes and tumorigenicity in pancreatic cancer cells. Br J Cancer 97: 345–357.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moniaux N, Escande F, Porchet N, Aubert JP, Batra SK . (2001). Structural organization and classification of the human mucin genes. Front Biosci 6: D1192–D1206.

    CAS  PubMed  Google Scholar 

  • Moniaux N, Junker WM, Singh AP, Jones AM, Batra SK . (2006). Characterization of human mucin MUC17. Complete coding sequence and organization. J Biol Chem 281: 23676–23685.

    CAS  PubMed  Google Scholar 

  • Moniaux N, Nollet S, Porchet N, Degand P, Laine A, Aubert JP . (1999). Complete sequence of the human mucin MUC4: a putative cell membrane-associated mucin. Biochem J 338: 325–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Kuwai T, Kitadai Y, Sasaki T, Fan D, Coombes KR et al. (2007). Zonal heterogeneity for gene expression in human pancreatic carcinoma. Cancer Res 67: 7597–7604.

    CAS  PubMed  Google Scholar 

  • Nemoto S, Finkel T . (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295: 2450–2452.

    CAS  PubMed  Google Scholar 

  • O'Brien TJ, Beard JB, Underwood LJ, Dennis RA, Santin AD, York L . (2001). The CA 125 gene: an extracellular superstructure dominated by repeat sequences. Tumour Biol 22: 348–366.

    CAS  PubMed  Google Scholar 

  • O'Brien TJ, Beard JB, Underwood LJ, Shigemasa K . (2002). The CA 125 gene: a newly discovered extension of the glycosylated N-terminal domain doubles the size of this extracellular superstructure. Tumour Biol 23: 154–169.

    CAS  PubMed  Google Scholar 

  • Pallesen LT, Berglund L, Rasmussen LK, Petersen TE, Rasmussen JT . (2002). Isolation and characterization of MUC15, a novel cell membrane-associated mucin. Eur J Biochem 269: 2755–2763.

    CAS  PubMed  Google Scholar 

  • Park HU, Kim JW, Kim GE, Bae HI, Crawley SC, Yang SC et al. (2003). Aberrant expression of MUC3 and MUC4 membrane-associated mucins and sialyl Le(x) antigen in pancreatic intraepithelial neoplasia. Pancreas 26: e48–e54.

    PubMed  Google Scholar 

  • Patton S, Gendler SJ, Spicer AP . (1995). The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim Biophys Acta 1241: 407–423.

    CAS  PubMed  Google Scholar 

  • Pochampalli MR, el Bejjani RM, Schroeder JA . (2007). MUC1 is a novel regulator of ErbB1 receptor trafficking. Oncogene 26: 1693–1701.

    CAS  PubMed  Google Scholar 

  • Price-Schiavi SA, Andrechek E, Idris N, Li P, Rong M, Zhang J et al. (2005). Expression, location, and interactions of ErbB2 and its intramembrane ligand Muc4 (sialomucin complex) in rat mammary gland during pregnancy. J Cell Physiol 203: 44–53.

    CAS  PubMed  Google Scholar 

  • Raina D, Ahmad R, Kumar S, Ren J, Yoshida K, Kharbanda S et al. (2006). MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J 25: 3774–3783.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raina D, Kharbanda S, Kufe D . (2004). The MUC1 oncoprotein activates the anti-apoptotic phosphoinositide 3-kinase/Akt and Bcl-xL pathways in rat 3Y1 fibroblasts. J Biol Chem 279: 20607–20612.

    CAS  PubMed  Google Scholar 

  • Ramsauer VP, Pino V, Farooq A, Carothers Carraway CA, Salas PJ, Carraway KL . (2006). Muc4-ErbB2 complex formation and signaling in polarized CACO-2 epithelial cells indicate that Muc4 acts as an unorthodox ligand for ErbB2. Mol Biol Cell 17: 2931–2941.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Raina D, Chen W, Li G, Huang L, Kufe D . (2006). MUC1 oncoprotein functions in activation of fibroblast growth factor receptor signaling. Mol Cancer Res 4: 873–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riese DJ, Stern DF . (1998). Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 20: 41–48.

    PubMed  Google Scholar 

  • Roepstorff K, Grovdal L, Grandal M, Lerdrup M, van DB . (2008). Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer. Histochem Cell Biol 129: 563–578.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M et al. (2004). Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem 279: 9190–9198.

    CAS  PubMed  Google Scholar 

  • Saitou M, Goto M, Horinouchi M, Tamada S, Nagata K, Hamada T et al. (2005). MUC4 expression is a novel prognostic factor in patients with invasive ductal carcinoma of the pancreas. J Clin Pathol 58: 845–852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlessinger J . (2000). Cell signaling by receptor tyrosine kinases. Cell 103: 211–225.

    CAS  PubMed  Google Scholar 

  • Scholler N, Garvik B, Hayden-Ledbetter M, Kline T, Urban N . (2007). Development of a CA125-mesothelin cell adhesion assay as a screening tool for biologics discovery. Cancer Lett 247: 130–136.

    CAS  PubMed  Google Scholar 

  • Schroeder JA, Masri AA, Adriance MC, Tessier JC, Kotlarczyk KL, Thompson MC et al. (2004). MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene 23: 5739–5747.

    CAS  PubMed  Google Scholar 

  • Schroeder JA, Thompson MC, Gardner MM, Gendler SJ . (2001). Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 276: 13057–13064.

    CAS  PubMed  Google Scholar 

  • Seelenmeyer C, Wegehingel S, Lechner J, Nickel W . (2003). The cancer antigen CA125 represents a novel counter receptor for galectin-1. J Cell Sci 116: 1305–1318.

    CAS  PubMed  Google Scholar 

  • Shibahara H, Tamada S, Higashi M, Goto M, Batra SK, Hollingsworth MA et al. (2004). MUC4 is a novel prognostic factor of intrahepatic cholangiocarcinoma-mass forming type. Hepatology 39: 220–229.

    CAS  PubMed  Google Scholar 

  • Shyu MK, Lin MC, Shih JC, Lee CN, Huang J, Liao CH et al. (2007). Mucin 15 is expressed in human placenta and suppresses invasion of trophoblast-like cells in vitro. Hum Reprod 22: 2723–2732.

    CAS  PubMed  Google Scholar 

  • Singh AP, Chauhan SC, Bafna S, Johansson SL, Smith LM, Moniaux N et al. (2006). Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate 66: 421–429.

    CAS  PubMed  Google Scholar 

  • Singh AP, Moniaux N, Chauhan SC, Meza JL, Batra SK . (2004). Inhibition of MUC4 expression suppresses pancreatic tumor cell growth and metastasis. Cancer Res 64: 622–630.

    CAS  PubMed  Google Scholar 

  • Singh PK, Hollingsworth MA . (2006). Cell surface-associated mucins in signal transduction. Trends Cell Biol 16: 467–476.

    CAS  PubMed  Google Scholar 

  • Singh PK, Wen Y, Swanson BJ, Shanmugam K, Kazlauskas A, Cerny RL et al. (2007). Platelet-derived growth factor receptor beta-mediated phosphorylation of MUC1 enhances invasiveness in pancreatic adenocarcinoma cells. Cancer Res 67: 5201–5210.

    CAS  PubMed  Google Scholar 

  • Swartz MJ, Batra SK, Varshney GC, Hollingsworth MA, Yeo CJ, Cameron JL et al. (2002). MUC4 expression increases progressively in pancreatic intraepithelial neoplasia. Am J Clin Pathol 117: 791–796.

    PubMed  Google Scholar 

  • Tamada S, Shibahara H, Higashi M, Goto M, Batra SK, Imai K et al. (2006). MUC4 is a novel prognostic factor of extrahepatic bile duct carcinoma. Clin Cancer Res 12: 4257–4264.

    CAS  PubMed  Google Scholar 

  • Taylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M . (1999). MUC1 and cancer. Biochim Biophys Acta 1455: 301–313.

    CAS  PubMed  Google Scholar 

  • Tsutsumida H, Goto M, Kitajima S, Kubota I, Hirotsu Y, Wakimoto J et al. (2007). MUC4 expression correlates with poor prognosis in small-sized lung adenocarcinoma. Lung Cancer 55: 195–203.

    PubMed  Google Scholar 

  • Walsh MD, Young JP, Leggett BA, Williams SH, Jass JR, McGuckin MA . (2007). The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas. Hum Pathol 38: 883–892.

    CAS  PubMed  Google Scholar 

  • Wei X, Xu H, Kufe D . (2005). Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell 7: 167–178.

    CAS  PubMed  Google Scholar 

  • Wei X, Xu H, Kufe D . (2006). MUC1 oncoprotein stabilizes and activates estrogen receptor alpha. Mol Cell 21: 295–305.

    CAS  PubMed  Google Scholar 

  • Williams SJ, Wreschner DH, Tran M, Eyre HJ, Sutherland GR, McGuckin MA . (2001). Muc13, a novel human cell surface mucin expressed by epithelial and hemopoietic cells. J Biol Chem 276: 18327–18336.

    CAS  PubMed  Google Scholar 

  • Workman HC, Sweeney C, Carraway III KL . (2009). The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms. Cancer Res 69: 2845–2852.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin L, Huang L, Kufe D . (2004). MUC1 oncoprotein activates the FOXO3a transcription factor in a survival response to oxidative stress. J Biol Chem 279: 45721–45727.

    CAS  PubMed  Google Scholar 

  • Yin L, Kharbanda S, Kufe D . (2009). MUC1 oncoprotein promotes autophagy in a survival response to glucose deprivation. Int J Oncol 34: 1691–1699.

    CAS  PubMed  Google Scholar 

  • Yin L, Li Y, Ren J, Kuwahara H, Kufe D . (2003). Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress. J Biol Chem 278: 35458–35464.

    CAS  PubMed  Google Scholar 

  • Yu D, Hung MC . (2000). Role of erbB2 in breast cancer chemosensitivity. Bioessays 22: 673–680.

    CAS  PubMed  Google Scholar 

  • Zeimet AG, Offner FA, Muller-Holzner E, Widschwendter M, Abendstein B, Fuith LC et al. (1998). Peritoneum and tissues of the female reproductive tract as physiological sources of CA-125. Tumour Biol 19: 275–282.

    CAS  PubMed  Google Scholar 

  • Zhao Q, Guo X, Nash GB, Stone PC, Hilkens J, Rhodes JM et al. (2009). Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res 69: 6799–6806.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors on this work are supported by grants from the National Institutes of Health (CA78590, CA111294, CA133774, and CA131944) and Department of Defense grant (BC074639). We thank Kristi L Berger for the paper editing and Dr Shantibhusan Senapati for editing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Batra.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bafna, S., Kaur, S. & Batra, S. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene 29, 2893–2904 (2010). https://doi.org/10.1038/onc.2010.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.87

Keywords

This article is cited by

Search

Quick links