Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TRPA1 is required for histamine-independent, Mas-related G protein–coupled receptor–mediated itch

Abstract

Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and nervous system disorders. In many cases, pathological itch is insensitive to antihistamine treatment. Recent studies have identified members of the Mas-related G protein–coupled receptor (Mrgpr) family that are activated by mast cell mediators and promote histamine-independent itch. MrgprA3 and MrgprC11 act as receptors for the pruritogens chloroquine and BAM8–22, respectively. However, the signaling pathways and transduction channels activated downstream of these pruritogens are largely unknown. We found that TRPA1 is the downstream target of both MrgprA3 and MrgprC11 in cultured sensory neurons and heterologous cells. TRPA1 is required for Mrgpr-mediated signaling, as sensory neurons from TRPA1-deficient mice exhibited markedly diminished responses to chloroquine and BAM8–22. Similarly, TRPA1-deficient mice displayed little to no scratching in response to these pruritogens. Our findings indicate that TRPA1 is an essential component of the signaling pathways that promote histamine-independent itch.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chloroquine and BAM activate a subset of TRPA1-positive sensory neurons.
Figure 2: TRPV1 is not required for chloroquine- or BAM-evoked excitation of neurons.
Figure 3: TRPA1 is required for chloroquine- and BAM-evoked excitation of neurons.
Figure 4: MrgprA3 and MrgprC11 couple to TRPA1 in neuronal cell lines.
Figure 5: MrgprA3 and MrgprC11 utilize distinct signaling pathways to activate TRPA1.
Figure 6: TRPA1-deficient mice are insensitive to chloroquine- and BAM-mediated itch.

Similar content being viewed by others

References

  1. Ikoma, A., Steinhoff, M., Stander, S., Yosipovitch, G. & Schmelz, M. The neurobiology of itch. Nat. Rev. Neurosci. 7, 535–547 (2006).

    Article  CAS  Google Scholar 

  2. Ajayi, A.A., Oluokun, A., Sofowora, O., Akinleye, A. & Ajayi, A.T. Epidemiology of antimalarial-induced pruritus in Africans. Eur. J. Clin. Pharmacol. 37, 539–540 (1989).

    Article  CAS  Google Scholar 

  3. Reddy, V.B., Iuga, A.O., Shimada, S.G., LaMotte, R.H. & Lerner, E.A. Cowhage-evoked itch is mediated by a novel cysteine protease: a ligand of protease-activated receptors. J. Neurosci. 28, 4331–4335 (2008).

    Article  CAS  Google Scholar 

  4. Johanek, L.M. et al. A role for polymodal C-fiber afferents in nonhistaminergic itch. J. Neurosci. 28, 7659–7669 (2008).

    Article  CAS  Google Scholar 

  5. Namer, B. et al. Separate peripheral pathways for pruritus in man. J. Neurophysiol. 100, 2062–2069 (2008).

    Article  Google Scholar 

  6. Sardana, N., Santos, C., Lehman, E. & Craig, T. A comparison of intranasal corticosteroid, leukotriene receptor antagonist, and topical antihistamine in reducing symptoms of perennial allergic rhinitis as assessed through the Rhinitis Severity Score. Allergy Asthma Proc. 31, 5–9 (2010).

    Article  CAS  Google Scholar 

  7. Nathan, R.A. Management of patients with allergic rhinitis and asthma: literature review. South. Med. J. 102, 935–941 (2009).

    Article  Google Scholar 

  8. Steinhoff, M. et al. Proteinase-activated receptor-2 mediates itch: a novel pathway for pruritus in human skin. J. Neurosci. 23, 6176–6180 (2003).

    Article  CAS  Google Scholar 

  9. Rukwied, R., Lischetzki, G., McGlone, F., Heyer, G. & Schmelz, M. Mast cell mediators other than histamine induce pruritus in atopic dermatitis patients: a dermal microdialysis study. Br. J. Dermatol. 142, 1114–1120 (2000).

    Article  CAS  Google Scholar 

  10. Tsujii, K., Andoh, T., Ui, H., Lee, J.B. & Kuraishi, Y. Involvement of tryptase and proteinase-activated receptor-2 in spontaneous itch-associated response in mice with atopy-like dermatitis. J. Pharmacol. Sci. 109, 388–395 (2009).

    Article  CAS  Google Scholar 

  11. Howarth, P.H., Salagean, M. & Dokic, D. Allergic rhinitis: not purely a histamine-related disease. Allergy 55 (suppl 64), 7–16 (2000).

    Article  Google Scholar 

  12. Davidson, S. et al. The itch-producing agents histamine and cowhage activate separate populations of primate spinothalamic tract neurons. J. Neurosci. 27, 10007–10014 (2007).

    Article  CAS  Google Scholar 

  13. Schmelz, M. et al. Chemical response pattern of different classes of C-nociceptors to pruritogens and algogens. J. Neurophysiol. 89, 2441–2448 (2003).

    Article  CAS  Google Scholar 

  14. Sun, Y.G. et al. Cellular basis of itch sensation. Science 325, 1531–1534 (2009).

    Article  CAS  Google Scholar 

  15. Imamachi, N. et al. TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms. Proc. Natl. Acad. Sci. USA 106, 11330–11335 (2009).

    Article  CAS  Google Scholar 

  16. Liu, Q. et al. Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139, 1353–1365 (2009).

    Article  Google Scholar 

  17. Lee, M.G. et al. Agonists of the MAS-related gene (Mrgs) orphan receptors as novel mediators of mast cell–sensory nerve interactions. J. Immunol. 180, 2251–2255 (2008).

    Article  CAS  Google Scholar 

  18. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  Google Scholar 

  19. Bandell, M. et al. Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41, 849–857 (2004).

    Article  CAS  Google Scholar 

  20. Parsons, M.E. & Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol. 147, S127–S135 (2006).

    Article  CAS  Google Scholar 

  21. Julius, D., MacDermott, A.B., Axel, R. & Jessell, T.M. Molecular characterization of a functional cDNA encoding the serotonin 1c receptor. Science 241, 558–564 (1988).

    Article  CAS  Google Scholar 

  22. Zylka, M.J., Dong, X., Southwell, A.L. & Anderson, D.J. Atypical expansion in mice of the sensory neuron-specific Mrg G protein–coupled receptor family. Proc. Natl. Acad. Sci. USA 100, 10043–10048 (2003).

    Article  CAS  Google Scholar 

  23. Han, S.K. et al. Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide–related peptides through the Galpha q/11 pathway. Proc. Natl. Acad. Sci. USA 99, 14740–14745 (2002).

    Article  CAS  Google Scholar 

  24. McNamara, C.R. et al. TRPA1 mediates formalin-induced pain. Proc. Natl. Acad. Sci. USA 104, 13525–13530 (2007).

    Article  CAS  Google Scholar 

  25. Eid, S.R. et al. HC-030031, a TRPA1 selective antagonist, attenuates inflammatory- and neuropathy-induced mechanical hypersensitivity. Mol. Pain 4, 48 (2008).

    Article  Google Scholar 

  26. Kerstein, P.C., del Camino, D., Moran, M.M. & Stucky, C.L. Pharmacological blockade of TRPA1 inhibits mechanical firing in nociceptors. Mol. Pain 5, 19 (2009).

    Article  Google Scholar 

  27. Kim, B.M., Lee, S.H., Shim, W.S. & Oh, U. Histamine-induced Ca2+ influx via the PLA2/lipoxygenase/TRPV1 pathway in rat sensory neurons. Neurosci. Lett. 361, 159–162 (2004).

    Article  CAS  Google Scholar 

  28. Shim, W.S. et al. TRPV1 mediates histamine-induced itching via the activation of phospholipase A2 and 12-lipoxygenase. J. Neurosci. 27, 2331–2337 (2007).

    Article  CAS  Google Scholar 

  29. Bautista, D.M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    Article  CAS  Google Scholar 

  30. Wang, S. et al. Phospholipase C and protein kinase A mediate bradykinin sensitization of TRPA1: a molecular mechanism of inflammatory pain. Brain 131, 1241–1251 (2008).

    Article  Google Scholar 

  31. Han, S.K., Mancino, V. & Simon, M.I. Phospholipase Cβ 3 mediates the scratching response activated by the histamine H1 receptor on C-fiber nociceptive neurons. Neuron 52, 691–703 (2006).

    Article  CAS  Google Scholar 

  32. Montell, C. In search of the holy grail for Drosophila TRP. Neuron 58, 825–827 (2008).

    Article  CAS  Google Scholar 

  33. Dascal, N. Ion-channel regulation by G proteins. Trends Endocrinol. Metab. 12, 391–398 (2001).

    Article  CAS  Google Scholar 

  34. Rishal, I., Porozov, Y., Yakubovich, D., Varon, D. & Dascal, N. Gβγ-dependent and Gβγ-independent basal activity of G protein–activated K+ channels. J. Biol. Chem. 280, 16685–16694 (2005).

    Article  CAS  Google Scholar 

  35. Zhou, Y., Sondek, J. & Harden, T.K. Activation of human phospholipase C-η2 by Gβγ. Biochemistry 47, 4410–4417 (2008).

    Article  CAS  Google Scholar 

  36. Bianchi, E., Norcini, M., Smrcka, A. & Ghelardini, C. Supraspinal Gβγ-dependent stimulation of PLCβ3 originating from G inhibitory protein-μ opioid receptor-coupling is necessary for morphine induced acute hyperalgesia. J. Neurochem. 111, 171–180 (2009).

    Article  CAS  Google Scholar 

  37. Shimada, S.G. & LaMotte, R.H. Behavioral differentiation between itch and pain in mouse. Pain 139, 681–687 (2008).

    Article  Google Scholar 

  38. Yosipovitch, G. & Fleisher, A. Itch asscociated with skin disease: Advances in pathophysiology and emerging therapies. Am. J. Clin. Dermatol. 4, 617–622 (2003).

    Article  Google Scholar 

  39. Abila, B., Ezeamuzie, I.C., Igbigbi, P.S., Ambakederemo, A.W. & Asomugha, L. Effects of two antihistamines on chloroquine and histamine induced weal and flare in healthy African volunteers. Afr. J. Med. Med. Sci. 23, 139–142 (1994).

    CAS  PubMed  Google Scholar 

  40. Zurborg, S., Yurgionas, B., Jira, J.A., Caspani, O. & Heppenstall, P.A. Direct activation of the ion channel TRPA1 by Ca2+. Nat. Neurosci. 10, 277–279 (2007).

    Article  CAS  Google Scholar 

  41. Wang, Y.Y., Chang, R.B., Waters, H.N., McKemy, D.D. & Liman, E.R. The nociceptor ion channel TRPA1 is potentiated and inactivated by permeating calcium ions. J. Biol. Chem. 283, 32691–32703 (2008).

    Article  CAS  Google Scholar 

  42. Mathews, J.L., Smrcka, A.V. & Bidlack, J.M.A. Novel G Gβγ-subunit inhibitor selectively modulates μ-opioid–dependent antinociception and attenuates acute morphine-induced antinociceptive tolerance and dependence. J. Neurosci. 28, 12183–12189 (2008).

    Article  CAS  Google Scholar 

  43. Rousset, M., Cens, T., Gouin-Charnet, A., Scamps, F. & Charnet, P. Ca2+ and phosphatidylinositol 4,5-bisphosphate stabilize a Gβγ-sensitive state of CaV2 Ca2+ channels. J. Biol. Chem. 279, 14619–14630 (2004).

    Article  CAS  Google Scholar 

  44. Ma, Q. Labeled lines meet and talk: population coding of somatic sensations. J. Clin. Invest. 120, 3773–3778 (2010).

    Article  CAS  Google Scholar 

  45. Guan, Y. et al. Mas-related G protein–coupled receptors inhibit pathological pain in mice. Proc. Natl. Acad. Sci. USA 107, 15933–15938 (2010).

    Article  CAS  Google Scholar 

  46. Davidson, S., Zhang, X., Khasabov, S.G., Simone, D.A. & Giesler, G.J. Jr. Relief of itch by scratching: state-dependent inhibition of primate spinothalamic tract neurons. Nat. Neurosci. 12, 544–546 (2009).

    Article  CAS  Google Scholar 

  47. Ross, S.E. et al. Loss of inhibitory interneurons in the dorsal spinal cord and elevated itch in Bhlhb5 mutant mice. Neuron 65, 886–898 (2010).

    Article  CAS  Google Scholar 

  48. Sun, Y.G. & Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 448, 700–703 (2007).

    Article  CAS  Google Scholar 

  49. Andriantsoanirina, V., Menard, D., Tuseo, L. & Durand, R. History and current status of Plasmodium falciparum antimalarial drug resistance in Madagascar. Scand. J. Infect. Dis. 42, 22–32 (2010).

    Article  CAS  Google Scholar 

  50. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Kollarik for advice on PCR, R. Brem for use of equipment, T. Morita for technical support, and R. Brem, J. Ngai, J. Sack, M. Tsunozaki, P. Aryal and M. Pellegrino for helpful discussions and critical reading of the manuscript. This study was supported by a US National Institutes of Health Innovator Award (DOD007123A), the Pew Scholars Program, the Rita Allen Foundation, and the McKnight Scholars Fund (D.M.B.), the National Science Foundation (S.R.W.), and a US National Institutes of Health grant (X.D.).

Author information

Authors and Affiliations

Authors

Contributions

S.R.W. and K.A.G. designed and carried out the cellular imaging, electrophysiology and PCR experiments. S.R.W. and A.B.-F. designed and implemented the behavioral studies. Q.L. and K.N.P. contributed to the cellular and behavioral studies. S.R.W., K.A.G. and D.M.B. wrote the manuscript. X.D. and D.M.B. provided advice and guidance.

Corresponding author

Correspondence to Diana M Bautista.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 1180 kb)

Supplementary Movie 1

Itch–evoked scratching in response to chloroquine injection. A wild type mouse displays robust scratching following subcutaneous injection of chloroquine (200 ug/10 μL, 40 mM) into the cheek. Movie displays a representative 15 second period of scratching, 5 minutes post-injection. (MOV 3213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, S., Gerhold, K., Bifolck-Fisher, A. et al. TRPA1 is required for histamine-independent, Mas-related G protein–coupled receptor–mediated itch. Nat Neurosci 14, 595–602 (2011). https://doi.org/10.1038/nn.2789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing