Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity

Abstract

Using natural killer T (NKT) cell–deficient mice, we show here that allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma, does not develop in the absence of Vα14i NKT cells. The failure of NKT cell–deficient mice to develop AHR is not due to an inability of these mice to produce type 2 T-helper (Th2) responses because NKT cell–deficient mice that are immunized subcutaneously at non-mucosal sites produce normal Th2-biased responses. The failure to develop AHR can be reversed by the adoptive transfer of tetramer-purified NKT cells producing interleukin (IL)-4 and IL-13 to Ja281−/− mice, which lack the invariant T-cell receptor (TCR) of NKT cells, or by the administration to Cd1d−/− mice of recombinant IL-13, which directly affects airway smooth muscle cells. Thus, pulmonary Vα14i NKT cells crucially regulate the development of asthma and Th2-biased respiratory immunity against nominal exogenous antigens. Therapies that target Vα14i NKT cells may be clinically effective in limiting the development of AHR and asthma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of antigen-induced airway responses in Cd1d1−/− mice.
Figure 2: Ja281−/− mice do not develop AHR.
Figure 3: Comparison of cytokine production, BAL fluid and IgE in Ja281−/− and BALB/c mice.
Figure 4: Adoptive transfer of NKT cells restores AHR in Ja281−/− mice.
Figure 5: IL-4 and IL-13 production by NKT cells is required for development of AHR.

Similar content being viewed by others

References

  1. Forecasted state-specific estimates of self-reported asthma prevalence—United States, 1998. Morb. Mortal. Wkly. Rep. 47, 1022–1025 (1998).

  2. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Martinez, F.D. et al. Asthma and wheezing in the first six years of life. N. Engl. J. Med. 332, 133–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Burrows, B., Martinez, F.D., Halonen, M., Barbee, R.A. & Cline, M.G. Association of asthma with serum IgE levels and skin-test reactivity to allergens. N. Engl. J. Med. 320, 271–277 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Illi, S. et al. The pattern of atopic sensitization is associated with the development of asthma in childhood. J. Allergy Clin. Immunol. 108, 709–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Van Eerdewegh, P. et al. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–430 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Holgate, S. et al. Epithelial-mesenchymal interactions in the pathogenesis of asthma. J. Allergy Clin. Immunol 105, 193–204 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Bendelac, A., Rivera, M.N., Park, S.H. & Roark, J.H. Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol. 15, 535–562 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Spada, F., Koezuka, Y. & Porcelli, S. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J. Exp. Med. 188, 1529–1534 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoshimoto, T. & Paul, W.E. CD4+, NK1.1+ T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J. Exp. Med. 179, 1285–1295 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Carnaud, C. et al. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  15. Cui, J. et al. Inhibition of T helper cell type 2 cell differentiation and immunoglobulin E response by ligand-activated Vα14 natural killer T cells. J. Exp. Med. 190, 783–792 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson, S.B. et al. Extreme Th1 bias of invariant Vα24JαQ T cells in type 1 diabetes. Nature 391, 177–181 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, P. et al. Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest 110, 793–800 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gombert, J. et al. Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J. Immunol 26, 2989–2989 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Baxter, A., Kinder, S., Hammond, K., Scollay, R. & Godfrey, D. Association between αβTCR+CD4CD8 T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572–582 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Hammond, K. et al. α/β-T cell receptor (TCR)+CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J. Exp. Med. 187, 1047–1056 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehuen, A. et al. Overexpression of natural killer T cells protects Vα14-Jα281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med. 188, 1831–1839 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Korsgren, M. et al. Natural killer cells determine development of allergen-induced eosinophilic airway inflammation in mice. J. Exp. Med. 189, 553–62 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang, Y., Rogers, K.H. & Lewis, D.B. β2-microglobulin-dependent T cells are dispensable for allergen-induced T helper 2 responses. J. Exp. Med. 184, 1507–1512 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Brown, D. et al. β2-microglobulin-dependent NK1.1+ T cells are not essential for T helper cell 2 immune responses. J. Exp. Med. 184, 1295–304 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science 282, 2258–2261 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Walter, D. et al. Critical role for IL-13 in the development of allergen-induced airway hyperreactivity. J. Immunol. 167, 4668–4675 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Corry, D.B. et al. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J. Exp. Med. 183, 109–117 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Leckie, M. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Nieuwenhuis, E.E. et al. CD1d-dependent macrophage-mediated clearance of Pseudomonas aeruginosa from lung. Nat. Med. 8, 588–593 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Matsuda, J. et al. Homeostasis of Vα14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, B., Geng, Y. & Wang, C. CD1-restricted NK T cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med. 194, 313–320 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hong, S. et al. The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 7, 1052–1056 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Sharif, S. et al. Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med. 7, 1057–1062 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12–mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Leishman, A. et al. Precursors of functional MHC class I– or class II–restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Terabe, M. et al. NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R–STAT6 pathway. Nat. Immunol. 1, 515–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Heller, F., Fuss, I., Nieuwenhuis, E., Blumberg, R. & Strober, W. Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17, 629–638 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. McKenzie, G.J., Fallon, P.G., Emson, C.L., Grencis, R.K. & McKenzie, A.N. Simultaneous disruption of interleukin (IL)-4 and IL-13 defines individual roles in T helper cell type 2–mediated responses. J. Exp. Med. 189, 1565–1572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hansen, G., Berry, G., DeKruyff, R.H. & Umetsu, D.T. Allergen-specific Th1 cells fail to counterbalance Th2 cell–induced airway hyperreactivity but cause severe airway inflammation. J. Clin. Invest. 103, 175–183 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuda, J. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haczku, A. et al. Aspergillus fumigatus-induced allergic airway inflammation alters surfactant homeostasis and lung function in BALB/c mice. Am J. Respir. Cell. Mol. Biol. 25, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Martin, T.R., Gerard, N.P., Galli, S.J. & Drazen, J.M. Pulmonary responses to bronchoconstrictor agonists in the mouse. J. Appl. Physiol. 64, 2318–2323 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Assenmacher, M., Schmitz, J. & Radbruch, A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-γ and in interleukin-4-expressing cells. Eur. J. Immunol. 24, 1097–1101 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Sander, B., Cardell, S. & Möller, E. Interleukin 4 and interferon γ production in restimulated CD4+ and CD8+ cells indicates memory type responsiveness. Scand. J. Immunol. 33, 287–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Blumberg for discussions, A. McKenzie for reagents, V.P. Yeung for technical support, and J. Faul, S. Galli and M. Tsai for help with the invasive measurement of AHR. These studies were supported by National Institutes of Health Public Health Service Grants RO1 AI26322 (D.T.U.), RO1 HL62348 (D.T.U.), RO1 CA52511 (M.K), AI40171 (M.J.G) and GM62135 (M.J.G); a grant from the American Lung Association of California (O.A.); fellowship STO 467/2-1 from the Deutsche Forschungsgemeinschaft (P.S.); and training grant T32AI07290 (E.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale T. Umetsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbari, O., Stock, P., Meyer, E. et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nat Med 9, 582–588 (2003). https://doi.org/10.1038/nm851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing