Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts

This article has been updated

Abstract

Pseudomonas aeruginosa infection is a serious complication in patients with cystic fibrosis and in immunocompromised individuals. Here we show that P. aeruginosa infection triggers activation of the acid sphingomyelinase and the release of ceramide in sphingolipid-rich rafts. Ceramide reorganizes these rafts into larger signaling platforms that are required to internalize P. aeruginosa, induce apoptosis and regulate the cytokine response in infected cells. Failure to generate ceramide-enriched membrane platforms in infected cells results in an unabated inflammatory response, massive release of interleukin (IL)-1 and septic death of mice. Our findings show that ceramide-enriched membrane platforms are central to the host defense against this potentially lethal pathogen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CFTR and CD95 cluster in sphingolipid-rich membrane platforms after infection with P. aeruginosa.
Figure 2: Sphingolipid-rich rafts are essential for P. aeruginosa infection of mammalian cells.
Figure 3: P. aeruginosa triggers platform formation by ASM-mediated release of ceramide.
Figure 4: ASM and ceramide-enriched membrane platforms regulate host cell apoptosis, P. aeruginosa internalization and cytokine release.
Figure 5: ASM is central to host defense against P. aeruginosa.

Similar content being viewed by others

Change history

  • 10 February 2003

    This was incorrect in AOP version but corrected in print. Regplaced Figure 1 and Figure 3 as per note.

Notes

  1. NOTE: In the version of this article initially published online, the labels for Figs. 1 and 3d were incorrect. The upper left label of Fig. 1a should read 'not infected'. All labels that read 'TEM' should read 'transmission'. This mistake has been corrected for the HTML and print versions of the article.

References

  1. Vidal, F. et al. Epidemiology and outcome of Pseudomonas aeruginosa bacteremia, with special emphasis on the influence of antibiotic treatment. Analysis of 189 episodes. Arch. Intern. Med. 156, 2121–2126 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Crouch Brewer, S., Wunderink, R.G., Jones, C.B. & Leeper, K.V. Ventilator-associated pneumonia due to Pseudomonas aeruginosa. Chest 109, 1019–1029 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Pier, G.B. et al. Role of mutant CFTR in hypersensitivity of cystic fibrosis patients to lung infections. Science 271, 64–67 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schroeder, T.H. et al. Transgenic cystic fibrosis mice exhibit reduced early clearance of Pseudomonas aeruginosa from the respiratory tract. J. Immunol. 166, 7410–7418 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Grassmé, H. et al. Host defense to Pseudomonas aeruginosa requires CD95/CD95 ligand interaction on epithelial cells. Science 290, 527–530 (2000).

    Article  PubMed  Google Scholar 

  6. Hauser, A.R. & Engel, J.N. Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells. Infect. Immun. 67, 5530–5537 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Rajan, S. et al. Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells. Am. J. Respir. Cell. Mol. Biol. 23, 304–312 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Schultz, M.J. et al. Role of interleukin-1 in the pulmonary immune response during Pseudomonas aeruginosa pneumonia. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L285–L290 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Xue, M.L. et al. The role of IL-1β in the regulation of IL-8 and IL-6 in human corneal epithelial cells during Pseudomonas aeruginosa colonization. Curr. Eye Res. 23, 406–414 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Inoue, H. et al. Pseudomonas stimulates interleukin-8 mRNA expression selectively in airway epithelium, in gland ducts, and in recruited neutrophils. Am. J. Resp. Cell. Mol. Biol. 11, 651–663 (1994).

    Article  CAS  Google Scholar 

  11. Harder, T. & Simons, K. Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr. Opin. Cell Biol. 9, 534–542 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Brown, D.A. & London, E. Structure and origin of ordered lipid domains in biological membranes. J. Membr. Biol. 164, 103–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Grassmé, H. et al. CD95 signaling via ceramide rich membrane rafts. J. Biol. Chem. 276, 20589–20596 (2001).

    Article  PubMed  Google Scholar 

  14. Cremesti, A. et al. Ceramide enables Fas to cap and kill. J. Biol. Chem. 276, 23954–23961 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Liu, P. & Anderson, R.G.W. Compartmentalized production of ceramide at the cell surface. J. Biol. Chem. 270, 27179–27185 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Schutze, S. et al. TNF activates NFκB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71, 765–767 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Veiga, M.P., Arrondo, J.L., Goni, F.M. & Alonso, A. Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlammelar phases. Biophys. J. 76, 342–350 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Holopainen, J.M., Subramanian, M. & Kinnunen, P.K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37, 17562–17570 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Jendrossek, V. et al. P. aeruginosa induced apoptosis involves mitochondria and stress activated protein kinases. Infect. Immun. 69, 2675–2683 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voll, R.E., Herrmann, M., Roth, E.A, Stach, C. & Kalden, J.R. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Fadok, V.A. et al. A receptor for phosphatidylserine-specific clearance of apoptotic cells. Nature 405, 85–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Shin, J.S., Gao, Z. & Abraham, S.N. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289, 732–733 (2000).

    Article  Google Scholar 

  24. Gatfield, J. & Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288, 1647–1650 (2000).

    CAS  PubMed  Google Scholar 

  25. Wooldrige, K.G., Williams, P.H. & Ketley, J.M. Host signal transduction and endocytosis of Campylobacter jejuni. Microb. Pathog. 21, 299–305 (1996).

    Article  Google Scholar 

  26. Anderson, H.A., Chen, Y. & Norkin, L.C. Bound simian virus 40 translocates to caveolin-enriched membrane domains, and its entry is inhibited by drugs that selectively disrupt caveolae. Mol. Biol. Cell 7, 1825–1834 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Manie, S.N., Debreyne, S., Vincent, S. & Gerlier, D. Measles virus structural components are enriched into lipid raft microdomains: a potential cellular location for virus assembly. J. Virol. 74, 305–311 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jan, J.T., Chatterjee, S. & Griffin, D.E. Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J. Virol. 74, 6425–6432 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Scheiffele, P., Rietveld, A., Wilk, T. & Simons, K. Influenza viruses select ordered lipid domains during budding from the plasma membrane. J. Biol. Chem. 274, 2038–2044 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Olliaro, P. & Castelli, F. Plasmodium falciparum: an electron microscopy study of caveolae and trafficking between the parasite and the extracellular medium. Int. J. Parasitol. 27, 1007–1012 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Kaneko, K. et al. COOH-terminal sequence on the cellular prion protein directs subcellular trafficking and controls conversion into the scrapie isoform. Proc. Natl. Acad. Sci. USA 94, 2333–2338 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kolesnick, R.N. 1,2-Diacylycerols, but not phorbol esters, stimulate sphingomyelin hydrolysis in GH3 pituitary cells. J. Biol. Chem. 262, 16759–167621 (1987).

    CAS  PubMed  Google Scholar 

  33. Kolesnick, R.N. & Clegg, S. 1,2-Diacylycerols, but not phorbol esters, activate a potential inhibitory pathway for protein kinase C in GH3 pituitary cells. Evidence for involvement of a sphingomyelinase. J. Biol. Chem. 263, 6534–6537 (1988).

    CAS  PubMed  Google Scholar 

  34. Grassmé, H. et al. Acidic sphingomyelinase mediates internalization of Neisseria gonorrhoeae into non-phagocytic cells. Cell 91, 605–615 (1997).

    Article  PubMed  Google Scholar 

  35. Esen, M. et al. Invasion of human epithelial cells by Pseudomonas aeruginosa involves Src-like tyrosine kinases p60Src and p59Fyn. Infect. Immun. 69, 281–287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gulbins, E. et al. Fas induced apoptosis is mediated by a ceramide initiated Ras signaling pathway. Immunity 2, 341–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Kirschnek, S. et al. CD95-mediated apoptosis in vivo involves acid sphingo-myelinase. J. Biol. Chem. 275, 27316–27323 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.G. was supported in part by the Deutsche Forschungsgemeinschaft (Gu 335/10-2 and Mo 435/17-1); the European Union; the Association for International Cancer Research; the National Cancer Institute (CA21765); and American Lebanese Syrian Associated Charities. M.W. was supported by the Deutsche Forschungsgemeinschaft (We 1502/10-1). R.K. was supported by the National Cancer Institute (CA85704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gulbins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grassmé, H., Jendrossek, V., Riehle, A. et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 9, 322–330 (2003). https://doi.org/10.1038/nm823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing