Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Murine γ-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-γ responsiveness: A new model for virus-induced vascular disease

An Erratum to this article was published on 01 March 1998

Abstract

Fundamental issues remain unresolved regarding the possible contribution of viruses to vascular pathology, as well as the role of the immune system in regulating these processes. Here we demonstrate that infection of mice with γ-herpesvirus 68 (γHV68) provides a novel model for addressing these issues. Interferon-γ receptor-deficient (IFNγR−/−) mice died weeks to months after γHV68 infection from a severe large-vessel panarteritis. γHV68-infected B cell-deficient and normal weanling mice exhibited milder large-vessel arteritis. Immunohistochemical analyses demonstrated γHV68 antigen in arteritic lesions and revealed a striking tropism of γHV68 for smooth muscle cells. These studies demonstrate that IFN-γ is essential for control of chronic vascular pathology induced by γHV68 and suggest γ-herpesviruses as candidate etiologic agents for human vasculitis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Weck, K.E., Barkon, M.L., Yoo, L.I., Speck, S.H. & Virgin, H.W. Mature B cells are required for acute splenic infection, but not for establishment of latency, by murine gammaherpesvirus 68. J. Virol. 70, 6775–6780 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Virgin, H.W. et al. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J. Virol. 71, 5894–5904 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Blaskovic, D., Stancekova, M., Svobodova, J. & Mistrikova, J. Isolation of five strains of herpesviruses from two species of free living small rodents. Acta Virol. 24, 468 (1980).

    CAS  PubMed  Google Scholar 

  4. Mistrikova, J. & Blaskovic, D. Ecology of the murine alphaherpesvirus and its isolation from lungs of rodents in cell culture. Acta Virol. 29, 312–317 (1985).

    CAS  PubMed  Google Scholar 

  5. Sunil-Chandra, N.P., Efstathiou, S., Arno, J. & Nash, A.A. Virological and pathological features of mice infected with murine gammaherpesvirus 68. J. Gen. Virol. 73, 2347–2356 (1992).

    Article  Google Scholar 

  6. Ehtisham, S., Sunil-Chandra, N.P. & Nash, A.A. Pathogenesis of murine gammaherpesvirus infection in mice deficient in CD4 and CD8 T cells. J. Virol. 67, 5247–5252 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sunil-Chandra, N.P., Efstathiou, S. & Nash, A.A. Murine gammaherpesvirus 68 establishes a latent infection in mouse B lymphocytes in vivo. J. Gen. Virol. 73, 3275–3279 (1992).

    Article  Google Scholar 

  8. Sunil-Chandra, N.P., Arno, J., Fazakerley, J. & Nash, A.A. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am. J. Pathol. 145, 818–826 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Usherwood, E.J., Stewart, J.P., Robertson, K., Allen, D.J. & Nash, A.A. Absence of splenic latency in murine gammaherpesvirus 68-infected B cell-deficient mice. J. Gen. Virol. 77 2819–2825 (1996).

    Article  CAS  Google Scholar 

  10. Cardin, R.D., Brooks, J.W., Sarawar, S.R. & Doherty, P.C. Progressive loss of CD8+ T cell-mediated control of a gamma-herpesvirus in the absence of CD4+ T cells. J. Exp. Med. 184, 863–871 (1996).

    Article  CAS  Google Scholar 

  11. Sarawar, S.R. et al. Cytokine production in the immune response to murine gammaherpesvirus 68. J. Virol. 70, 3264–3268 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Meraz, M.A. et al. Targeted disruption of the Stat 1 gene in mice reveals unexpected physiologic specificity of the JAK-STAT signalling pathway. Cell 84, 431–442 (1996).

    Article  CAS  Google Scholar 

  13. Muller, U. et al. Functional role of type I and type II interferons in antiviral defense. Science 264, 1918–1921 (1994).

    Article  CAS  Google Scholar 

  14. Sarawar, S.R. et al. Gamma interferon is not essential for recovery from acute infection with murine gammaherpesvirus 68. J. Virol. 71, 3916–3921 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dutia, B.M., Clarke, C.J., Allen, D.J. & Nash, A.A. Pathological changes in the spleens of gamma interferon receptor-deficient mice infected with murine gammaherpesvirus: A role for CD8 T cells. J. Virol. 71, 4278–4283 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lawn, R.M. et al. Atherogenesis in transgenic mice expressing human apolipoprotein (a). Nature 360, 670–672 (1992).

    Article  CAS  Google Scholar 

  17. Plump, A.S. et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E deficient mice created by homologous recombination in ES cells. Cell 71, 343–353 (1992).

    Article  CAS  Google Scholar 

  18. Zhang, S.H., Reddick, R.L., Piedrahita, J.A. & Maeda, N. Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258, 468–471 (1992).

    Article  CAS  Google Scholar 

  19. Shi, C. et al. Immunologic basis of transplant-associated arteriosclerosis. Proc. Natl. Acad. Sci. USA 93, 4051–4056 (1996).

    Article  CAS  Google Scholar 

  20. Geng, Y-J. et al. Expression of the macrophage scavenger receptor in atheroma: Relationship to immune activation and the T-cellcytokine interferon-gamma. Arterioscler. Thromb. Vasc. Biol. 15, 1995–2002 (1995).

    Article  CAS  Google Scholar 

  21. Hansson, G.K., Hellstrand, M., Rymo, L., Rubbia, L. & Gabbiani, G. Interferon-gamma inhibits both proliferation and expression of differentiation-specific alpha-smooth muscle actin in arterial smooth muscle cells. J. Exp. Med. 170, 1595–1608 (1989).

    Article  CAS  Google Scholar 

  22. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739–1741 (1993).

    Article  CAS  Google Scholar 

  23. Fabricant, C.G., Hajjar, D.P., Minick, C.R. & Fabricant, J. Herpesvirus infection enhances cholesterol and cholesteryl ester accumulation in cultured arterial smooth muscle cells. Am. J. Pathol. 105, 176–184 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsu, H-Y., Nicholson, A.C., Pomerantz, K.B., Kaner, R.J. & Hajjar, D.P. Altered cholesterol trafficking in herpesvirus-infected arterial Cells: Evidence for viral protein kinase-mediated cholesterol accumulation. J. Biol. Chem. 270, 19630–19637 (1995).

    Article  CAS  Google Scholar 

  25. Key, N.S. et al. Infection of vascular endothelial Cells with herpes simplex virus enhances tissue factor acticity and reduces thrombomodulin expression. Proc. Natl. Acad. Sci. USA 87, 7095–7099 (1990).

    Article  CAS  Google Scholar 

  26. Etingin, O.R., Silverstein, R.L., Friedman, H.M. & Hajjar, D.P. Viral activation of the coagulation cascade: Molecular interactions at the surface of infected endothelial Cells. Cell 61, 657–662 (1990).

    Article  CAS  Google Scholar 

  27. van Dam-Mieras, M.C.E. et al. The procoagulant response of cytomegalovirus infected endothelial Cells. Thromb. Haemostasis 68, 364–370 (1992).

    Article  CAS  Google Scholar 

  28. Kerr, G.S. Takayasu's arteritis. Rheum. Dis. Clin. N. Am. 21, 1041–1058 (1995).

    CAS  Google Scholar 

  29. Siegel, R.J. Disorders of blood vessels, in Cardiovascular Disorders: Pathogenesis and Pathophysiology. (ed. Gravanis, M.B.) Ch. 17, 517–560 (Mosby-Year Book, St. Louis, MO, 1993).

    Google Scholar 

  30. Lie, J.T. The classification and diagnosis of vasculitis in large and medium-sized blood vessels. Pathol. Annu. 22, 125–162 (1987).

    PubMed  Google Scholar 

  31. Greene, N., Baughman, R. & Kim, C. Takayasu's arteritis associated with interstitial lung disease and glomerulonephritis. Chest 89, 605–606 (1986).

    Article  CAS  Google Scholar 

  32. Ross, R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362, 801–809 (1993).

    Article  CAS  Google Scholar 

  33. Ridker, P.M., Cushman, M., Stamfer, M.J., Tracy, R.P. & Hennekens, C.H., Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N. Engl. J. Med. 336, 973–979 (1997).

    Article  CAS  Google Scholar 

  34. Libby, P. & Hansson, G.K. Involvement of the immune system in human atherogenesis: Current knowledge and unanswered questions. Lab. Invest. 64, 5–15 (1991).

    CAS  Google Scholar 

  35. Stemme, S. & Hansson, G.K. Immune mechanisms in atherogenesis. Ann. Med. 26, 141–146 (1994).

    Article  CAS  Google Scholar 

  36. Stemme, S. et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc. Natl. Acad. Sci. USA 92, 3893–3897 (1995).

    Article  CAS  Google Scholar 

  37. Shih, J.C.H. & Keleman, D.W. Possible roles of viruses in atherosclerosis. Adv. Exp. Med. Biol. 369, 89–98 (1995).

    Article  CAS  Google Scholar 

  38. Melnick, J.L., Adam, E. & DeBakey, M.E. Cytomegalovirus and atherosclerosis. BioEssays 17, 899–903 (1995).

    Article  CAS  Google Scholar 

  39. Grattan, M.T. et al. Cytomegalovirus infection is associated with cardiac allograft rejection and atherosclerosis. JAMA 261, 3561–3566 (1989).

    Article  CAS  Google Scholar 

  40. McDonald, K., Rector, T.S., Braunlin, E.A., Kubo, S.H. & Olivari, M.T. Association of coronary artery disease in cardiac transplant recipients with cytomegalovirus infection. Am. J. Cardiol. 64, 359–362 (1989).

    Article  CAS  Google Scholar 

  41. Dummer, S. et al. Investigation of cytomegalovirus infection as a risk factor for coronary atherosclerosis in the explanted hearts of patients undergoing heart transplantation. J. Med. Virol. 44, 305–309 (1994).

    Article  CAS  Google Scholar 

  42. Sorlie, P.D. et al. Cytomegalovirus/herpesvirus and carotid atherosclerosis: The ARIC study. J. Med. Virol. 42, 33–37 (1994).

    Article  CAS  Google Scholar 

  43. Benditt, E.P., Barrett, T. & McDougall, J.K. Viruses in the etiology of atherosclerosis. Proc. Natl. Acad. Sci. USA 80, 6386–6389 (1983).

    Article  CAS  Google Scholar 

  44. Visser, M.R. & VerCellotti, G.M. Herpes simplex virus and atherosclerosis. Eur. Heart J. 14, 39–42 (1993).

    PubMed  Google Scholar 

  45. Raza-Ahmad, A. et al. Evidence of type 2 herpes simplex infection in human coronary arteries at the time of coronary artery bypass surgery. Can. J. Cardiol. 11, 1025–1029 (1995).

    CAS  PubMed  Google Scholar 

  46. Hendrix, M.G.R., Salimans, M.M.M., van Boven, C.P.A. & Bruggeman, C.A. High prevalence of latently present cytomegalovirus in arterial walls of patients suffering from grade III atherosclerosis. Am. J. Pathol. 136, 23–28 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamashiroya, H.M., Ghosh, L., Yang, R. & Robertson, A.L.J. Herpesviridae in the coronary arteries and aorta of young trauma victims. Am. J. Pathol. 130, 71–79 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hendrix, M.G., Dormans, P.H., Kitslaar, P., Bosman, F. & Bruggeman, C.A. The presence of cytomegalovirus nucleic acids in arterial walls of atherosclerotic and nonatherosclerotic patients. Am. J. Pathol. 134, 1151–1157 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tanaka, S. et al. Possible role of cytomegalovirus in the pathogenesis of inflammatory aortic diseases: A preliminary report. J. Vasc. Surg. 16, 274–279 (1992).

    Article  CAS  Google Scholar 

  50. Hendrix, M.G.R., Daemen, M. & Bruggeman, C.A. Cytomegalovirus nucleic acid distribution within the human vascular tree. Am. J. Pathol. 138, 563–567 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fabricant, C.G. Antherosclerosis: The consequence of infection with a herpesvirus. Adv. Vet. Sci. Comp. Med. 30, 39–66 (1985).

    CAS  PubMed  Google Scholar 

  52. Shih, J.C.H., Pyrzak, R. & Guy, J.S. Discovery of noninfectious viral genes complementary to Marek's disease herpesvirus in quail susceptible to cholesterol-induced atherosclerosis. J. Nutr. 119, 294–298 (1989).

    Article  CAS  Google Scholar 

  53. Dangler, C.A. Baker S.E., Njenga M.K. & Chia S.H. Murine cytomegalovirus-associated arteritis. Vet. Pathol. 32, 127–133 (1995).

    Article  CAS  Google Scholar 

  54. Persoons, M.C.J., Daemen, M.J.A.P., Bruning, J.H. & Bruggeman, C.A. Active cytomegalovirus infection of arterial smooth muscle Cells in immunocompromised rats: A clue to herpesvirus-associated atherogenesis? Circ. Res. 75, 214–220 (1994).

    Article  CAS  Google Scholar 

  55. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in beta 2M, MHC class I proteins, and CD8+ T Cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  56. Kitamura, D., Roes, J., Kuhn, R. & Rajewsky, K. A B Cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature 350, 423–426 (1991).

    Article  CAS  Google Scholar 

  57. Paigen, B., Morrow, A., Brandon, C., Mitchell, D. & Holmes, P. Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis 57, 65–73 (1985).

    Article  CAS  Google Scholar 

  58. Shindler, K.S. & Roth, K.A. Double immunofluorescent staining using two unconjugated primary antisera raised in the same species. J. Histochem. Cytochem. 44, 1331–1335 (1996).

    Article  CAS  Google Scholar 

  59. Tsukada, T., Tippins, D., Gordon, D., Ross, R. & Gown, A.M. HHF35, a muscle-actin-specific monoclonal antibody. I. Immunocytochemical and biochemical characterization. Am. J. Pathol. 126, 51–60 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Virgin, H.W., Mann, M.A., Fields, B.N. & Tyler, K.L. Monoclonal antibodies to reovirus reveal structure/function relationships between capsid proteins and genetics of susceptibility to antibody action. J. Virol. 65, 6772–6781 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weck, K., Dal Canto, A., Gould, J. et al. Murine γ-herpesvirus 68 causes severe large-vessel arteritis in mice lacking interferon-γ responsiveness: A new model for virus-induced vascular disease. Nat Med 3, 1346–1353 (1997). https://doi.org/10.1038/nm1297-1346

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1297-1346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing