Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2

Abstract

The activity of fibroblast growth factor 2 (FGF-2) is stringently controlled. Inactive in undisturbed tissues, it is activated during injury and is critical for tissue repair. We find that this control can be imposed by the soluble syndecan-1 ectodomain, a heparan sulfate proteoglycan shed from cell surfaces into wound fluids. The ectodomain potently inhibits heparin-mediated FGF-2 mitogenicity because of the poorly sulfated domains in its heparin sulfate chains. Degradation of these regions by platelet heparanase produces heparin-like heparin sulfate fragments that markedly activate FGF-2 mitogenicity and are found in wound fluids. These results establish a novel physiological control for FGF-2 and suggest new ways to modulate FGF activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zhou, M. et al. Fibroblast growth factor 2 control of vascular tone. Nature Med. 4, 201–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Mason, I.J. The ins and outs of fibroblast growth factors. Cell 78, 547–552 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Bashkin, P. et al. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 28, 1737–1743 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Folkman, J. et al. A heparin-binding angiogenic protein-basic fibroblast growth factor is stored within basement membrane. Am. J. Pathol. 130, 393–399 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez, A.M., Buscaglia, M., Ong, M. & Baird, A. Distribution of basic fibroblast growth factor in the 18-day rat fetus: localization in the basement membranes of diverse tissues. J. Cell Biol. 110, 753–765 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Flaumenhaft, R. & Rifkin, D.B. The extracellular regulation of growth factor action. Mol. Biol. Cell 3, 1057–1065 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abraham, J.A. & Klagsbrun, M. in The Molecular and Cellular Biology of Wound Repair (ed. Clark, R.A.F.) 195–248 (Plenum, New York, 1996).

    Google Scholar 

  8. Schlessinger, J., Lax, I. & Lemmon, M. Regulation of growth factor activation by proteoglycans: what is the role of the low affinity receptors. Cell 83, 357–360 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Klagsbrun, M. & Baird, A. A dual receptor system is required for basic fibroblast growth factor activity. Cell 67, 229–231 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Bernfield, M. et al. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8, 365–398 (1992).

    Article  CAS  PubMed  Google Scholar 

  11. Humphries, D.E. & Stevens, R.L. in Heparin and Related Polysaccharides (eds. Lane, D.A., Björk, I. & Lindahl, U.) 59–67 (Plenum, New York, 1992).

    Book  Google Scholar 

  12. Steinfeld, R., Van Den Berghe, H. & David, C. Stimulation of fibroblast growth factor receptor-1 occupancy and signalling by cell surface-associated syndecans and glypican. J. Cell Biol. 133, 405–416 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Rose-John, S. & Heinrich, P.C. Soluble receptors for cytokines and growth factors: generation and biological function. Biochem. J. 300, 281–290 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Subramanian, S.V., Fitzgerald, M.L. & Bernfield, M. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation. J. Biol. Chem. 272, 14713–14720 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Moscatelli, D. Basic fibroblast growth factor (bFCF) dissociates rapidly from heparan sulfates but slowly from receptors - Implications for mechanisms of bFGF release from the pericellular matrix. J. Biol. Chem. 267, 25803–25809 (1992).

    CAS  PubMed  Google Scholar 

  16. Ornitz, D.M. et al. Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol. Cell. Biol. 12, 240–247 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kato, M., Wang, H., Bernfield, M., Gallagher, J.T. & Turnbull, J.E. Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J. Biol. Chem. 269, 1881–1890 (1994).

    Google Scholar 

  18. Hoogewerf, A.J. et al. CXC chemokines connective tissue activating peptide-lll and neutrophil activating peptide-2 are heparin/heparan sulfate-degrading enzymes. J. Biol. Chem. 270, 3268–3277 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Shively, J.E. & Conrad, H.E. Formation of anhydrosugars in the chemical depoly-merization of heparin. Biochemistry 15, 3932–3942 (1976).

    Article  CAS  PubMed  Google Scholar 

  20. Aviezer, D. et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013 (1994a).

    Article  CAS  PubMed  Google Scholar 

  21. Aviezer, D. et al. Differential structural requirements of heparin and heparan sulfate proteogycans that promote binding of basic fibroblast growth factor to its receptor. J. Biol. Chem. 269, 114–121 (1994b).

    CAS  PubMed  Google Scholar 

  22. Stringer, S.E. & Gallagher, J.T. Heparan Sulphate. Int. J. Biochem. Cell Biol. 29 (5), 709–714 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Linhardt, R.J., Turnbull, J.E., Wang, H.M., Loganathan, D. & Gallagher, J.T. Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry 29, 2611–2617 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, H. et al. Glycosaminoglycans can influence fibroblast growth factor-2 mitogenicity without significant growth factor binding. Biochem. Biophys. Res. Commun. 235, 369–373 (1997). Erratum. Biochem. Biophys. Res. Commun. 242, 248 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Celli, G., LaRochelle, W.J., Mackern, S., Sharp, R. & Merlino, G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J. 17, 1642–1655 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mali, M., Andtfolk, H., Miettinen, H.M. & Jalkanen, M. Suppression of tumor cell growth by syndecan-1 ectodomain. J. Biol. Chem. 269, 27795–27798 (1994).

    CAS  PubMed  Google Scholar 

  27. Castellot, J.J., Addonizio, M.L., Rosenberg, R.D. & Karnovsky, M.J. Cultured endothelial cells produce a heparin-like inhibitor of smooth muscle cell growth. J. Cell Biol. 90, 372–379 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Frize, L.M.S., Reilly, C.F. & Rosenberg, R.D. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J. Cell Biol. 100, 1041–1049 (1985).

    Article  Google Scholar 

  29. Benitz, W.E., Kelley, R.T., Anderson, C.M., Lorant, D.E. & Bernfield, M. Endothelial heparan sulfate proteoglycan. I. Inhibitory effects on smooth muscle cell proliferation. Am. J. Resp. Cell Mol. Biol. 2, 13–24 (1990).

    Article  CAS  Google Scholar 

  30. Nugent, M.A., Karnovsky, M.J. & Edelman, E.R. Vascular cell-derived heparan sulfate shows coupled inhibition of basic fibroblast growth factor building and mitogenesis in vascular smooth muscle cells. Circ. Res. 73, 1051–1060 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Forsten, K.E., Courant, N.A. & Nugent, M.A. Endothelial proteoglycans inhibit bFGF binding and mitogenesis. J. Cell. Phys. 172, 209–220 (1997).

    Article  CAS  Google Scholar 

  32. Hiscock, D.R., Canfield, A. & Gallagher, J.T. Molecular structure of heparan sulphate synthesized by bovine aortic endothelial cells. Biochim. Biophys. Acta 1244, 104–112 (1995).

    Article  PubMed  Google Scholar 

  33. Ishai-Michaeli, R., Eldor, A. & Vlodavsky, I. Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul. 1, 833–842 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Matzner, Y., Vlodavsky, I., Bar-Ner, M., Ishai-Michaeli, R. & Tauber, A. Subcellular localization of heparanase in human neutrophils. J. Leukoc. Biol. 51, 519–524 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Guimond, S., Maccarana, M., Olwin, B.B., Lindahl, U. & Rapraeger, A.C. Activating and inhibitory heparin seqeunces for FGF-2 (basic FGF). Distinct requirements for FGF-1, FGF-2, and FGF-4. J. Biol. Chem. 268, 23906–23914 (1993).

    CAS  PubMed  Google Scholar 

  36. Walker, A., Turnbull, J.E. & Gallager, J.T. Specific heparan sulfate saccharides mediate the activity of basic fibriblast growth factor. J. Biol. Chem. 269, 931–935 (1994).

    CAS  PubMed  Google Scholar 

  37. Gilat, D. et al. Molecular behavior adapts to context: Heparanase functions as an extracellular matrix-degrading enzyme or as a T Cell adhesion molecule, depending on the local pH. J. Exp. Med. 181, 1929–1934 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Ernst, S., Langer, R., Cooney, C. & Sasisekharan, R. Enzymatic degradation of glycosaminoglycans. Crit. Rev. Biochem. Mol. Biol. 30, 387–444 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Elenius, K. et al. Induced expression of syndecan in healing wounds. J. Cell Biol. 114, 585–595 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Gallo, R.L. et al. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc. Natl. Acad. Sci. USA 91, 11035–11039 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gallagher, J.T., Turnbull, J.E. & Lyon, M. Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme. Int. J. Biochem. 24, 553–560 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Venkataraman, G. et al. Preferential self-association of basic fibroblast growth factor is stabilized by heparin during receptor dimerization and activation. Proc. Natl. Acad. Sci. USA 93, 845–850 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Faham, S., Hileman, R.E., Fromm, J.R., Linhardt, R.J. & Rees, D.C. Heparin structure and interactions with basic fibroblast growth factor. Science 271, 1116–1122 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Ornitz, D.M. et al. FGF binding and FGF receptor activation by synthetic he-parin-derived di- and trisaccharides. Science 268, 432–436 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Koda, J.E., Rapraeger, A. & Bernfield, M. Heparan sulfate proteoglycans from mouse mammary epithelial cells: Cell surface proteoglycan as a receptor for interstitial collagens. J. Biol. Chem. 260, 8157–8162 (1985).

    CAS  PubMed  Google Scholar 

  46. Saunders, S. & Bernfield, M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor on epithelial for interstitial matrix. J. Cell Biol. 106, 423–430 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Jalkanen, M., Rapraeger, A., Saunders, S. & Bernfield, M. Cell surface proteoglycan of mouse mammary epithelial cells is shed by cleavage of its matrix-binding ectodomain from its membrane-associated domain. J. Cell Biol. 105, 3087–3096 (1987).

    Article  CAS  PubMed  Google Scholar 

  48. Jalkanen, M., Nguyen, H., Rapraeger, A., Kurn, N. & Bernfield, M. Heparan sulfate proteoglycans from mouse mammary epithelial cells: Localization on the cell surface with a monoclonal antibody. J. Cell Biol. 101, 976–984 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kato, M., Wang, H., Kainulainen, V. et al. Physiological degradation converts the soluble syndecan-1 ectodomain from an inhibitor to a potent activator of FGF-2. Nat Med 4, 691–697 (1998). https://doi.org/10.1038/nm0698-691

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0698-691

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing