Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol

Abstract

Ethambutol (EMB), a frontline antituberculous drug, targets the mycobacterial cell wall, a unique structure among prokaryotes which consists of an outer layer of mycolic acids covalently bound to peptidoglycan via the arabinogalactan. EMB inhibits the polymerization of cell wall arabinan, and results in the accumulation of the lipid carrier decaprenol phosphoarabinose1,2, which suggests that the drug interferes with the transfer of arabinose to the cell wall acceptor. Unfortunately, resistance to EMB has been described in up to 4% of clinical isolates of Mycobacterium tuberculosis and is prevalent among isolates from patients with multidrug-resistant tuberculosis3. We used resistance to EMB as a tool to identify genes participating in the biosynthesis of the mycobacterial cell wall. This approach led to the identification of the embCAB gene cluster, recently proposed to encode for mycobacterial arabinosyl transferases4. Resistance to EMB results from an accumulation of genetic events determining overexpression of the Emb protein(s), structural mutation in EmbB, or both. Further characterization of these proteins might provide information on targets for new chemotherapeutic agents and might help development of diagnostic strategies for the detection of resistant M. tuberculosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Takayama, K. & Kilburn, J.O. Inhibition of synthesis of arabinogalactan by ethambutol in Mycobacterium smegmatis. Antimicrob. Agents Chemother. 33, 1493–1499 (1989).

    Article  CAS  Google Scholar 

  2. Wolucka, B.A., McNeil, M.R., de Hoffmann, E., Chojnacki, T. & Brennan, P.J. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269, 23328–23335 (1994).

    CAS  PubMed  Google Scholar 

  3. Bloch, A.B. et al. Nationwide survey of drug-resistant tuberculosis in the United States. JAMA 271, 665–671 (1994).

    Article  CAS  Google Scholar 

  4. Belanger, A.E. et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the an-timycobacterial drug ethambutol. Proc. Natl. Acad. Sd. USA 93, 11919–11924 (1996).

    Article  CAS  Google Scholar 

  5. Snapper, S.B., Melton, R.E., Mustafa, S., Kieser, T. & Jacobs, W.R. Jr. Isolation and characterization of efficient transformation mutants of Mycobacterium smegmatis. Mol. Microbiol. 4, 1911–1919 (1990).

    Article  CAS  Google Scholar 

  6. Eiglmeier, K., Honoré, N., Woods, S.A., Caudron, B. & Cole, S.T. Use of an ordered library to deduce the genomic organization of Mycobacterium leprae. Mol. Microbiol. 7, 197–206 (1993).

    Article  CAS  Google Scholar 

  7. Maddry, J.A., Suling, W.J. & Reynolds, R.C. Glycosyl transferases as targets for inhibition of cell wall synthesis in M tuberculosis and M. avium. Res. Microbiol. 147, 106–112 (1996).

    Google Scholar 

  8. Deng, L. et al. Recognition of multiple effects of ethambutol on metabolism of mycobacterial cell envelope. Antimicrob. Agents Chemother. 39, 694–701 (1995).

    Article  CAS  Google Scholar 

  9. Musser, J.M. Antimicrobial agent resistance in mycobacteria: Molecular genetic insights . Clin. Microbiol. Rev. 8, 496–514 (1995).

    Article  CAS  Google Scholar 

  10. Telenti, A. Genetics of drug resistance in tuberculosis. Clin. Chest Med. 18, 5.1–5.10 (1997).

    Article  Google Scholar 

  11. Zhang, Y., Heym, B., Allen, B., Young, D. & Cole, S.T. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 501–593 (1992).

    Google Scholar 

  12. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  Google Scholar 

  13. Deretic, V. et al. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: Implications for sensitivity to isoniazid. Mol. Microbiol. 17, 889–900 (1995).

    Article  CAS  Google Scholar 

  14. Wilson, T.M. & Collins, D.M. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol. Microbiol. 19, 1025–1034 (1996).

    Article  CAS  Google Scholar 

  15. Telenti, A. et al. Genotypic assessment of isoniazid and rifampin resistance in Mycobacterium tuberculosis: A blind study at reference laboratory level. J. Clin. Microbiol. 35, 719–723 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Telenti, A. et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341, 647–650 (1993).

    Article  CAS  Google Scholar 

  17. Finken, M., Kirschner, P., Meier, A., Wrede, A. & Bottger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9, 1239–1246 (1993).

    Article  CAS  Google Scholar 

  18. Honoré, N. & Cole, S.T. Streptomycin resistance in mycobacteria. Antimicrob. Agents Chemother. 38, 238–242 (1994).

    Article  Google Scholar 

  19. Takiff, H.E. et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob. Agents Chemother. 38, 773–780 (1994).

    Article  CAS  Google Scholar 

  20. Kocagoz, T. et al. Gyrase mutations in laboratory selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemother. 40, 1768–1774 (1996).

    Article  CAS  Google Scholar 

  21. Takiff, H.E. et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc. Natl. Acad. Sci. USA 93, 362–366 (1996).

    Article  CAS  Google Scholar 

  22. Scorpio, A. & Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nature Med. 2, 662–667 (1996).

    Article  CAS  Google Scholar 

  23. Telenti, A. & Persing, D.H. Novel strategies for the detection of drug resistance in Mycobacterium tuberculosis. Res. Microbiol. 147, 73–79 (1996).

    Article  CAS  Google Scholar 

  24. Lazlo, A., Rahman, M., Raviglione, M., Bustreo, F. & the WHO/IUTLD network of supranational reference laboratories. Quality assurance programme for drug susceptibility testing of Mycobacterium tuberculosis in the WHO/IUTLD supranational laboratory network: First round of proficiency testing. Intl. J. Tuberculosis Lung Dis. (in the press).

  25. Gangadharam, P.R. & Gonzalez, E.R. Influence of the medium on the in vitro susceptibility of Mycobacterium tuberculosis to ethambutol. Am. Rev. Resp. Dis. 102, 653–655 (1970).

    CAS  PubMed  Google Scholar 

  26. Heifets, L.B., Iseman, M.D. & Lindholm-Levy, P.J. Ethambutol MICs and MBCs for Mycobacterium avium complex and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 30, 927–932 (1986).

    Article  CAS  Google Scholar 

  27. Levin, M.E. & Hatfull, G.F. Mycobacterium smegmatis RNA polymerase: DNA super-coiling, action of rifampicin and mechanism of rifampicin resistance. Mol. Microbiol. 8, 277–285 (1993).

    Article  CAS  Google Scholar 

  28. Rost, B. & Sander, C. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19, 55–72 (1994).

    Article  CAS  Google Scholar 

  29. Philipp, W.J. et al. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with M. leprae. Proc. Natl. Acad. Sci. USA 93, 3132–3137 (1996).

    Article  CAS  Google Scholar 

  30. Telenti, A., Imboden, P., Marchesi, F., Schmidheini, T. & Bodmer, T., Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism. Antimicrob. Agents Chemother. 37, 2054–2058 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Telenti, A., Philipp, W., Sreevatsan, S. et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3, 567–570 (1997). https://doi.org/10.1038/nm0597-567

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0597-567

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing