Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases

Abstract

The NOD-like receptor (NLR) family, pyrin domain–containing protein 3 (NLRP3) inflammasome is a component of the inflammatory process, and its aberrant activation is pathogenic in inherited disorders such as cryopyrin-associated periodic syndrome (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes, Alzheimer's disease and atherosclerosis. We describe the development of MCC950, a potent, selective, small-molecule inhibitor of NLRP3. MCC950 blocked canonical and noncanonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibited activation of NLRP3 but not the AIM2, NLRC4 or NLRP1 inflammasomes. MCC950 reduced interleukin-1β (IL-1β) production in vivo and attenuated the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescued neonatal lethality in a mouse model of CAPS and was active in ex vivo samples from individuals with Muckle–Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for further study of the NLRP3 inflammasome in human health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MCC950 inhibits NLRP3 inflammasome activation in response to canonical and noncanonical NLRP3 stimuli.
Figure 2: MCC950 does not inhibit NLRC4, AIM2, TLR signaling or priming of NLRP3.
Figure 3: MCC950 blocks NLRP3-dependent ASC oligomerization.
Figure 4: MCC950 does not block K+ efflux, Ca2+ flux or direct NLRP3 and ASC interactions.
Figure 5: MCC950 is active in vivo, and treatment of mice with MCC950 attenuates EAE.
Figure 6: MCC950 inhibits NLRP3 activation in a mouse model of MWS and in PBMCs from human subjects with MWS ex vivo.

Similar content being viewed by others

References

  1. Wen, H., Miao, E.A. & Ting, J.P. Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity 39, 432–441 (2013).

    CAS  PubMed  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  3. Latz, E., Xiao, T.S. & Stutz, A. Activation and regulation of the inflammasomes. Nat. Rev. Immunol. 13, 397–411 (2013).

    CAS  PubMed  Google Scholar 

  4. Lamkanfi, M. & Dixit, V.M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    CAS  PubMed  Google Scholar 

  5. Masters, S.L., Simon, A., Aksentijevich, I. & Kastner, D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wen, H., Ting, J.P. & O'Neill, L.A. A role for the NLRP3 inflammasome in metabolic diseases: did Warburg miss inflammation? Nat. Immunol. 13, 352–357 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. De Nardo, D., De Nardo, C.M. & Latz, E. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am. J. Pathol. 184, 42–54 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Szabo, G. & Csak, T. Inflammasomes in liver diseases. J. Hepatol. 57, 642–654 (2012).

    CAS  PubMed  Google Scholar 

  9. Anders, H.J. & Muruve, D.A. The inflammasomes in kidney disease. J. Am. Soc. Nephrol. 22, 1007–1018 (2011).

    CAS  PubMed  Google Scholar 

  10. Youm, Y.H. et al. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 18, 519–532 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Dinarello, C.A. & van der Meer, J.W. Treating inflammation by blocking interleukin-1 in humans. Semin. Immunol. 25, 469–489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Coll, R.C., Robertson, A., Butler, M., Cooper, M. & O'Neill, L.A. The cytokine release inhibitory drug CRID3 targets ASC oligomerisation in the NLRP3 and AIM2 inflammasomes. PLoS ONE 6, e29539 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Juliana, C. et al. Anti-inflammatory compounds parthenolide and Bay 11–7082 are direct inhibitors of the inflammasome. J. Biol. Chem. 285, 9792–9802 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. He, Y. et al. 3,4-Methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J. Biol. Chem. 289, 1142–1150 (2014).

    CAS  PubMed  Google Scholar 

  17. Ahn, H., Kim, J., Jeung, E.B. & Lee, G.S. Dimethyl sulfoxide inhibits NLRP3 inflammasome activation. Immunobiology 219, 315–322 (2014).

    CAS  PubMed  Google Scholar 

  18. Perregaux, D.G. et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J. Pharmacol. Exp. Ther. 299, 187–197 (2001).

    CAS  PubMed  Google Scholar 

  19. Laliberte, R.E. et al. Glutathione S-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1β post-translational processing. J. Biol. Chem. 278, 16567–16578 (2003).

    CAS  PubMed  Google Scholar 

  20. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  21. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    CAS  PubMed  Google Scholar 

  22. Groß, O. et al. Inflammasome activators induce interleukin-1α secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    PubMed  Google Scholar 

  23. Jin, C. et al. NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc. Natl. Acad. Sci. USA 108, 14867–14872 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Netea, M.G. et al. Differential requirement for the activation of the inflammasome for processing and release of IL-1β in monocytes and macrophages. Blood 113, 2324–2335 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011).

    CAS  PubMed  Google Scholar 

  26. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013).

    CAS  PubMed  Google Scholar 

  27. Broz, P., von Moltke, J., Jones, J.W., Vance, R.E. & Monack, D.M. Differential requirement for caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8, 471–483 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bürckstümmer, T. et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10, 266–272 (2009).

    PubMed  Google Scholar 

  29. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fernandes-Alnemri, T., Yu, J.W., Datta, P., Wu, J. & Alnemri, E.S. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458, 509–513 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Roberts, T.L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009).

    CAS  PubMed  Google Scholar 

  32. Kwok, B.H., Koh, B., Ndubuisi, M.I., Elofsson, M. & Crews, C.M. The anti-inflammatory natural product parthenolide from the medicinal herb Feverfew directly binds to and inhibits IκB kinase. Chem. Biol. 8, 759–766 (2001).

    CAS  PubMed  Google Scholar 

  33. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boyden, E.D. & Dietrich, W.F. Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat. Genet. 38, 240–244 (2006).

    CAS  PubMed  Google Scholar 

  35. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    PubMed  PubMed Central  Google Scholar 

  36. Ashcroft, F.M. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Invest. 115, 2047–2058 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    PubMed  Google Scholar 

  38. Horng, T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 35, 253–261 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. He, Y., Franchi, L. & Nunez, G. TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J. Immunol. 190, 334–339 (2013).

    CAS  PubMed  Google Scholar 

  40. Lalor, S.J. et al. Caspase-1-processed cytokines IL-1β and IL-18 promote IL-17 production by γδ and CD4 T cells that mediate autoimmunity. J. Immunol. 186, 5738–5748 (2011).

    CAS  PubMed  Google Scholar 

  41. Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  43. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    CAS  PubMed  Google Scholar 

  44. Brydges, S.D. et al. Inflammasome-mediated disease animal models reveal roles for innate but not adaptive immunity. Immunity 30, 875–887 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Masters, S.L. et al. NLRP1 inflammasome activation induces pyroptosis of hematopoietic progenitor cells. Immunity 37, 1009–1023 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hoffman, H.M., Mueller, J.L., Broide, D.H., Wanderer, A.A. & Kolodner, R.D. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat. Genet. 29, 301–305 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Gattorno, M. et al. Pattern of interleukin-1β secretion in response to lipopolysaccharide and ATP before and after interleukin-1 blockade in patients with CIAS1 mutations. Arthritis Rheum. 56, 3138–3148 (2007).

    CAS  PubMed  Google Scholar 

  48. Lee, G.S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bauernfeind, F. et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J. Immunol. 187, 613–617 (2011).

    CAS  PubMed  Google Scholar 

  50. Brydges, S.D. et al. Divergence of IL-1, IL-18, and cell death in NLRP3 inflammasomopathies. J. Clin. Invest. 123, 4695–4705 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. López-Castejón, G. & Pelegrin, P. Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin. Investig. Drugs 21, 995–1007 (2012).

    PubMed  Google Scholar 

  52. Fautrel, B. Economic benefits of optimizing anchor therapy for rheumatoid arthritis. Rheumatology (Oxford) 51 (suppl. 4), iv21–iv26 (2012).

    CAS  Google Scholar 

  53. Urban, F.J. et al. Novel synthesis of 1-(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)-3-[4-(1-hydroxy-1-methyl-ethyl)-furan-2-sulfonyl]urea, an anti-inflammatory agent. Synth. Commun. 33, 2029–2043 (2003).

    CAS  Google Scholar 

  54. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1β converting enzyme. Science 267, 2000–2003 (1995).

    CAS  PubMed  Google Scholar 

  55. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998).

    CAS  PubMed  Google Scholar 

  56. Hett, E.C. et al. Chemical genetics reveals a kinase-independent role for protein kinase R in pyroptosis. Nat. Chem. Biol. 9, 398–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Croker, D.E. et al. C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and β-arrestin recruitment. Immunol. Cell Biol. 92, 631–639 (2014).

    CAS  PubMed  Google Scholar 

  58. Sester, D.P. et al. A novel flow cytometric method to assess inflammasome formation. J. Immunol. 194, 455–462 (2015).

    CAS  PubMed  Google Scholar 

  59. Westwell-Roper, C., Dunne, A., Kim, M.L., Verchere, C.B. & Masters, S.L. Activating the NLRP3 inflammasome using the amyloidogenic peptide IAPP. Methods Mol. Biol. 1040, 9–18 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Kitanovic (German Center for Neurodegenerative Diseases) for image analysis (Fig. 3c), S. Corr (Trinity College Dublin) for providing S. typhimurium UK-1 strain and H.M. Hoffman (University of California, San Diego) for providing Nlrp3 (A350VneoR) mice. This work was supported by the following funding bodies, grants and fellowships. L.A.J.O'N. and R.C.C.: Science Foundation Ireland (G20598). D.L.K. and J.J.C.: Intramural Research Program of the National Human Genome Research Institute, US National Institutes of Health. S.C.H., C.E.S. and K.H.G.M.: Science Foundation Ireland (11/PI/1036) and (07/SRC/B1144). I.V.: Australian Research Council (FT130101215). G.N.: US National Institutes of Health (DK091191) and (DK095782). E.L.: German Research Foundation (SFB645, SFB670, SFB704, TRR57), European Research Council (ERC, InflammAct) and Excellence Cluster ImmunoSensation. S.L.M.: VESKI innovation fellowship and National Health and Medical Research Council of Australia (1032065) and (1057815). K.S.: Queensland Smart Futures Fund and Australian Research Council (FT130100361). L.A.J.O'N.: ERC Advanced Grant (E12435).

Author information

Authors and Affiliations

Authors

Contributions

R.C.C. performed and analyzed the experiments described in Figures 1b–j, 2, 3a,b and 4f–h and Supplementary Figure 6b–g; helped analyze the experiments described in Figure 5a–c and Supplementary Figure 6h,i; and wrote the manuscript. A.A.B.R. synthesized MCC950, conducted formulation for in vivo studies, determined compound pharmacokinetics, helped write the manuscript and provided advice. J.J.C. performed the experiments described in Figure 6f and Supplementary Figure 8. S.C.H. performed and analyzed the experiment described in Figure 5d–g. R.M.-P. performed the experiments described in Figure 4a,b. M.C.I. and I.V. performed the experiments described in Figure 4c–e. L.S.D. performed the experiment described in Figure 5a–c. B.G.M. and A.S. performed the experiments described in Figure 3c and Supplementary Figure 7. D.E.C. performed the experiments described in Supplementary Figure 6a. M.S.B. performed the NMR analysis described in Supplementary Figures 1, 2, 3, 4, 5 and Supplementary Table 1. M.H. performed the experiments described in Supplementary Figure 6h,i. C.E.S. helped analyze data from the experiment described in Figure 5d–g. G.N., E.L. and D.L.K. oversaw a portion of the work. K.H.G.M. conceived ideas and oversaw a portion of the work. S.L.M. performed and analyzed the experiments described in Figure 6a–e. K.S., S.L.M. and M.A.C. conceived ideas, oversaw a portion of the work, reviewed the manuscript and provided advice. L.A.J.O'N. conceived ideas, oversaw the research program and wrote the manuscript.

Corresponding authors

Correspondence to Matthew A Cooper or Luke A J O'Neill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Tables 1–5. (PDF 12971 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coll, R., Robertson, A., Chae, J. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21, 248–255 (2015). https://doi.org/10.1038/nm.3806

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3806

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research