Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+ myeloid population that exacerbates asthmatic pathology

Abstract

Interleukin-25 (IL-25) is a cytokine associated with allergy and asthma that functions to promote type 2 immune responses at mucosal epithelial surfaces and serves to protect against helminth parasitic infections in the intestinal tract. This study identifies the IL-25 receptor, IL-17RB, as a key mediator of both innate and adaptive pulmonary type 2 immune responses. Allergen exposure upregulated IL-25 and induced type 2 cytokine production in a previously undescribed granulocytic population, termed type 2 myeloid (T2M) cells. Il17rb−/− mice showed reduced lung pathology after chronic allergen exposure and decreased type 2 cytokine production in T2M cells and CD4+ T lymphocytes. Airway instillation of IL-25 induced IL-4 and IL-13 production in T2M cells, demonstrating their importance in eliciting T cell–independent inflammation. The adoptive transfer of T2M cells reconstituted IL-25–mediated responses in Il17rb−/− mice. High-dose dexamethasone treatment did not reduce the IL-25–induced T2M pulmonary response. Finally, a similar IL-4– and IL-13–producing granulocytic population was identified in peripheral blood of human subjects with asthma. These data establish IL-25 and its receptor IL-17RB as targets for innate and adaptive immune responses in chronic allergic airway disease and identify T2M cells as a new steroid-resistant cell population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Allergen exposure increases pulmonary IL-25 and IL-17RB expression and recruits bone marrow–derived IL-17RB+ IL-4– and IL-13–producing myeloid cells to the lung.
Figure 2: Il17rb−/− mice are protected from allergen-induced type 2 inflammation, and type 2 cytokine production in CD11b+Gr-1+ myeloid cells is IL-17RB dependent.
Figure 3: T2M cells represent the primary source of type 2 cytokines following pulmonary IL-25 administration.
Figure 4: Patterns of surface receptor expression and a comparison of microarray profiles define T2M cells as a distinct granulocytic subset.
Figure 5: T2M cells are steroid resistant and are sufficient to induce airway pathology in Il17rb−/− mice.
Figure 6: An IL-4– and IL-13–producing population analogous to T2M cells is identifiable in peripheral blood and markedly increased in individuals with asthma.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Wang, W., Li, J.J., Foster, P.S., Hansbro, P.M. & Yang, M. Potential therapeutic targets for steroid-resistant asthma. Curr. Drug Targets 11, 957–970 (2010).

    Article  CAS  Google Scholar 

  2. Ogawa, Y. & Calhoun, W.J. Phenotypic characterization of severe asthma. Curr. Opin. Pulm. Med. 16, 48–54 (2010).

    Article  Google Scholar 

  3. Adcock, I.M., Ford, P.A., Bhavsar, P., Ahmad, T. & Chung, K.F. Steroid resistance in asthma: mechanisms and treatment options. Curr. Allergy Asthma Rep. 8, 171–178 (2008).

    Article  CAS  Google Scholar 

  4. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and TH2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  Google Scholar 

  5. Fallon, P.G. et al. Identification of an interleukin (IL)-25–dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  Google Scholar 

  6. Tamachi, T. et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 cell–dependent pathway in mice. J. Allergy Clin. Immunol. 118, 606–614 (2006).

    Article  CAS  Google Scholar 

  7. Dolgachev, V., Petersen, B.C., Budelsky, A.L., Berlin, A.A. & Lukacs, N.W. Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived TH2 cytokine production are dependent upon stem cell factor–induced responses during chronic allergic pulmonary disease. J. Immunol. 183, 5705–5715 (2009).

    Article  CAS  Google Scholar 

  8. Terrier, B. et al. IL-25: a cytokine linking eosinophils and adaptative immunity in Churg-Strauss syndrome. Blood 116, 4523–4531 (2010).

    Article  CAS  Google Scholar 

  9. Sharkhuu, T. et al. Mechanism of interleukin-25 (IL-17E)–induced pulmonary inflammation and airways hyper-reactivity. Clin. Exp. Allergy 36, 1575–1583 (2006).

    Article  CAS  Google Scholar 

  10. Rickel, E.A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25–induced activities. J. Immunol. 181, 4299–4310 (2008).

    Article  CAS  Google Scholar 

  11. Lee, J. et al. IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276, 1660–1664 (2001).

    Article  CAS  Google Scholar 

  12. Claudio, E. et al. The adaptor protein CIKS/Act1 is essential for IL-25–mediated allergic airway inflammation. J. Immunol. 182, 1617–1630 (2009).

    Article  CAS  Google Scholar 

  13. Swaidani, S. et al. The critical role of epithelial-derived Act1 in IL-17– and IL-25–mediated pulmonary inflammation. J. Immunol. 182, 1631–1640 (2009).

    Article  CAS  Google Scholar 

  14. Wong, C.K., Li, P.W. & Lam, C.W. Intracellular JNK, p38 MAPK and NF-κB regulate IL-25 induced release of cytokines and chemokines from costimulated T helper lymphocytes. Immunol. Lett. 112, 82–91 (2007).

    Article  CAS  Google Scholar 

  15. Maezawa, Y. et al. Involvement of TNF receptor–associated factor 6 in IL-25 receptor signaling. J. Immunol. 176, 1013–1018 (2006).

    Article  CAS  Google Scholar 

  16. Wang, Y.H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated TH2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    Article  CAS  Google Scholar 

  17. Stock, P., Lombardi, V., Kohlrautz, V. & Akbari, O. Induction of airway hyperreactivity by IL-25 is dependent on a subset of invariant NKT cells expressing IL-17RB. J. Immunol. 182, 5116–5122 (2009).

    Article  CAS  Google Scholar 

  18. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  Google Scholar 

  19. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  Google Scholar 

  20. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    Article  CAS  Google Scholar 

  21. Corrigan, C.J. et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J. Allergy Clin. Immunol. 128, 116–124 (2011).

    Article  CAS  Google Scholar 

  22. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  Google Scholar 

  23. Ballantyne, S.J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).

    Article  CAS  Google Scholar 

  24. Wang, H. et al. Allergen challenge of peripheral blood mononuclear cells from patients with seasonal allergic rhinitis increases IL-17RB, which regulates basophil apoptosis and degranulation. Clin. Exp. Allergy 40, 1194–1202 (2010).

    Article  CAS  Google Scholar 

  25. Jung, J.S. et al. Association of IL-17RB gene polymorphism with asthma. Chest 135, 1173–1180 (2009).

    Article  CAS  Google Scholar 

  26. Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  Google Scholar 

  27. Mjösberg, J.M. et al. Human IL-25– and IL-33–responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011).

    Article  Google Scholar 

  28. Paul, W.E. Interleukin-4 production by FcɛR+ cells. Skin Pharmacol. 4 (suppl. 1), 8–14 (1991).

    Article  Google Scholar 

  29. Seder, R.A. et al. Production of interleukin-4 and other cytokines following stimulation of mast cell lines and in vivo mast cells/basophils. Int. Arch. Allergy Appl. Immunol. 94, 137–140 (1991).

    Article  CAS  Google Scholar 

  30. van Panhuys, N. et al. Basophils are the major producers of IL-4 during primary helminth infection. J. Immunol. 186, 2719–2728 (2011).

    Article  CAS  Google Scholar 

  31. Torrero, M.N., Hubner, M.P., Larson, D., Karasuyama, H. & Mitre, E. Basophils amplify type 2 immune responses, but do not serve a protective role, during chronic infection of mice with the filarial nematode Litomosoides sigmodontis. J. Immunol. 185, 7426–7434 (2010).

    Article  CAS  Google Scholar 

  32. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for TH2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    Article  CAS  Google Scholar 

  33. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    Article  CAS  Google Scholar 

  34. Perrigoue, J.G. et al. MHC class II–dependent basophil-CD4+ T cell interactions promote T(H)2 cytokine-dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    Article  CAS  Google Scholar 

  35. Wang, H.B., Ghiran, I., Matthaei, K. & Weller, P.F. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J. Immunol. 179, 7585–7592 (2007).

    Article  CAS  Google Scholar 

  36. Bandeira-Melo, C. et al. IL-16 promotes leukotriene C4 and IL-4 release from human eosinophils via CD4- and autocrine CCR3-chemokine-mediated signaling. J. Immunol. 168, 4756–4763 (2002).

    Article  CAS  Google Scholar 

  37. Holtzman, M.J. et al. Immune pathways for translating viral infection into chronic airway disease. Adv. Immunol. 102, 245–276 (2009).

    Article  CAS  Google Scholar 

  38. Kim, E.Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    Article  CAS  Google Scholar 

  39. Peranzoni, E. et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 22, 238–244 (2010).

    Article  CAS  Google Scholar 

  40. Gabrilovich, D.I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  41. Garley, M., Jablonska, E., Grabowska, S.Z. & Piotrowski, L. IL-17 family cytokines in neutrophils of patients with oral epithelial squamous cell carcinoma. Neoplasma 56, 96–100 (2009).

    Article  CAS  Google Scholar 

  42. Hansbro, P.M., Kaiko, G.E. & Foster, P.S. Cytokine/anti-cytokine therapy—novel treatments for asthma? Br. J. Pharmacol. 163, 81–95 (2011).

    Article  CAS  Google Scholar 

  43. Bullens, D.M. et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res. 7, 135 (2006).

    Article  Google Scholar 

  44. Drews, A.C. et al. Neutrophilic airway inflammation is a main feature of induced sputum in nonatopic asthmatic children. Allergy 64, 1597–1601 (2009).

    Article  CAS  Google Scholar 

  45. Kikuchi, S., Nagata, M., Kikuchi, I., Hagiwara, K. & Kanazawa, M. Association between neutrophilic and eosinophilic inflammation in patients with severe persistent asthma. Int. Arch. Allergy Immunol. 137 (suppl. 1), 7–11 (2005).

    Article  CAS  Google Scholar 

  46. Fukakusa, M. et al. Oral corticosteroids decrease eosinophil and CC chemokine expression but increase neutrophil, IL-8, and IFN-γ–inducible protein 10 expression in asthmatic airway mucosa. J. Allergy Clin. Immunol. 115, 280–286 (2005).

    Article  CAS  Google Scholar 

  47. Lindén, A., Hoshino, H. & Laan, M. Airway neutrophils and interleukin-17. Eur. Respir. J. 15, 973–977 (2000).

    Article  Google Scholar 

  48. Jatakanon, A. et al. Neutrophilic inflammation in severe persistent asthma. Am. J. Respir. Crit. Care Med. 160, 1532–1539 (1999).

    Article  CAS  Google Scholar 

  49. Vazquez-Tello, A. et al. Induction of glucocorticoid receptor-β expression in epithelial cells of asthmatic airways by T-helper type 17 cytokines. Clin. Exp. Allergy 40, 1312–1322 (2010).

    Article  CAS  Google Scholar 

  50. McKinley, L. et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. J. Immunol. 181, 4089–4097 (2008).

    Article  CAS  Google Scholar 

  51. Kaiko, G.E., Phipps, S., Angkasekwinai, P., Dong, C. & Foster, P.S. NK Cell deficiency predisposes to viral-induced TH2-type allergic inflammation via epithelial-derived IL-25. J. Immunol. 185, 4681–4690 (2010).

    Article  CAS  Google Scholar 

  52. Berlin, A.A., Hogaboam, C.M. & Lukacs, N.W. Inhibition of SCF attenuates peribronchial remodeling in chronic cockroach allergen–induced asthma. Lab. Invest. 86, 557–565 (2006).

    Article  CAS  Google Scholar 

  53. Campbell, E.M., Kunkel, S.L., Strieter, R.M. & Lukacs, N.W. Temporal role of chemokines in a murine model of cockroach allergen–induced airway hyperreactivity and eosinophilia. J. Immunol. 161, 7047–7053 (1998).

    CAS  Google Scholar 

  54. Campbell, E., Hogaboam, C., Lincoln, P. & Lukacs, N.W. Stem cell factor–induced airway hyperreactivity in allergic and normal mice. Am. J. Pathol. 154, 1259–1265 (1999).

    Article  CAS  Google Scholar 

  55. Lukacs, N.W. et al. Respiratory virus–induced TLR7 activation controls IL-17–associated increased mucus via IL-23 regulation. J. Immunol. 185, 2231–2239 (2010).

    Article  CAS  Google Scholar 

  56. Kallal, L.E., Hartigan, A.J., Hogaboam, C.M., Schaller, M.A. & Lukacs, N.W. Inefficient lymph node sensitization during respiratory viral infection promotes IL-17–mediated lung pathology. J. Immunol. 185, 4137–4147 (2010).

    Article  CAS  Google Scholar 

  57. Smit, J.J. et al. The balance between plasmacytoid DC versus conventional DC determines pulmonary immunity to virus infections. PLoS One 3, e1720 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Connett for comments on the manuscript, K. Augusztiny for valuable insight and perspective, members of the Lukacs, Kunkel and Hogaboam labs for many helpful discussions, and the University of Michigan Flow Cytometry and DNA Sequencing Cores for technical assistance. This work was supported by US National Institutes of Health grants R01 HL05178 and R01 HL036302 (to N.W.L.) and National Institute of General Medical Studies grant 3T32GM007863-31S1 (to the University of Michigan Medical Scientist Training Program and B.C.P.). Il17rb−/− mice were provided by A.L. Budelsky (Amgen).

Author information

Authors and Affiliations

Authors

Contributions

B.C.P. conceived of the study, performed experiments and data analyses and wrote the manuscript. A.L.B. and M.A.S. provided intellectual contributions through technical advice and experimental design. A.P.B. coordinated recruitment of subjects with asthma. N.W.L. conceived of and supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Nicholas W Lukacs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 6355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petersen, B., Budelsky, A., Baptist, A. et al. Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+ myeloid population that exacerbates asthmatic pathology. Nat Med 18, 751–758 (2012). https://doi.org/10.1038/nm.2735

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2735

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing