Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box–binding protein-1 to modulate the unfolded protein response

Abstract

Class Ia phosphoinositide 3-kinase (PI3K), an essential mediator of the metabolic actions of insulin, is composed of a catalytic (p110α or p110β) and regulatory (p85αα, p85βα or p55α) subunit. Here we show that p85αα interacts with X-box–binding protein-1 (XBP-1), a transcriptional mediator of the unfolded protein response (UPR), in an endoplasmic reticulum (ER) stress-dependent manner. Cell lines with knockout or knockdown of p85αα show marked alterations in the UPR, including reduced ER stress–dependent accumulation of nuclear XBP-1, decreased induction of UPR target genes and increased rates of apoptosis. This is associated with a decreased activation of inositol-requiring protein-1α (IRE1α) and activating transcription factor-6αα (ATF6α). Mice with deletion of p85α in liver (L-Pik3r1−/−) show a similar attenuated UPR after tunicamycin administration, leading to an increased inflammatory response. Thus, p85αα forms a previously unrecognized link between the PI3K pathway, which is central to insulin action, and the regulation of the cellular response to ER stress, a state that when unresolved leads to insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of XBP-1 as a p85α interacting protein.
Figure 2: Evaluation of ER stress and UPR signaling dynamics in p85α-deficient fibroblasts.
Figure 3: Evaluation of XBP-1 target-gene transcription, UPR-dependent gene expression and apoptosis.
Figure 4: Evaluation of the UPR in livers from control and L-Pik3r1−/− mice.
Figure 5: Analysis of gene expression, XBP-1 splicing and XBP-1 stability in livers from Pik3r1lox/lox and L-Pik3r1−/− mice after 72 h of vehicle or tunicamycin treatment (n = 5 per group).
Figure 6: Analysis of liver from control and L-Pik3r1−/− mice after tunicamycin treatment.

Similar content being viewed by others

References

  1. Gotto, A.M. Jr. et al. The metabolic syndrome: a call to action. Coron. Artery Dis. 17, 77–80 (2006).

    Article  Google Scholar 

  2. Ford, E.S., Giles, W.H. & Mokdad, A.H. Increasing prevalence of the metabolic syndrome among US adults. Diabetes Care 27, 2444–2449 (2004).

    Article  Google Scholar 

  3. Dandona, P., Aljada, A. & Bandyopadhyay, A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol. 25, 4–7 (2004).

    Article  CAS  Google Scholar 

  4. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  Google Scholar 

  5. Vanhaesebroeck, B., Stein, R.C. & Waterfield, M.D. The study of phosphoinositide 3-kinase function. Cancer Surv. 27, 249–270 (1996).

    CAS  PubMed  Google Scholar 

  6. Cheatham, B. et al. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis and glucose transporter translocation. Mol. Cell. Biol. 14, 4902–4911 (1994).

    Article  CAS  Google Scholar 

  7. Sharma, P.M. et al. Inhibition of phosphatidylinositol 3-kinase activity by adenovirus-mediated gene transfer and its effect on insulin action. J. Biol. Chem. [In Process Citation] 273, 18528–18537 (1998).

    Article  CAS  Google Scholar 

  8. Cusi, K. et al. Insulin resistance differentially affects the PI 3-kinase– and MAP kinase–mediated signaling in human muscle. J. Clin. Invest. 105, 311–320 (2000).

    Article  CAS  Google Scholar 

  9. Heydrick, S.J., Gautier, N., Olichon-Berthe, C., Van Obberghen, E. & Le Marchand-Brustel, Y Early alteration of insulin stimulation of PI 3-kinase in muscle and adipocyte from gold thioglucose obese mice. Am. J. Physiol. 268, E604–E612 (1995).

    Article  CAS  Google Scholar 

  10. Bandyopadhyay, G.K., Yu, J.G., Ofrecio, J. & Olefsky, J.M. Increased p85/55/50 expression and decreased phosphotidylinositol 3-kinase activity in insulin-resistant human skeletal muscle. Diabetes 54, 2351–2359 (2005).

    Article  CAS  Google Scholar 

  11. Ni, M. & Lee, A.S. ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641–3651 (2007).

    Article  CAS  Google Scholar 

  12. Dobson, C.M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16 (2004).

    Article  CAS  Google Scholar 

  13. Schröder, M. & Kaufman, R. ER stress and the unfolded protein response. Mutat. Res. 569, 29–63 (2005).

    Article  Google Scholar 

  14. Ron, D. & Walter, P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529 (2007).

    Article  CAS  Google Scholar 

  15. Elouil, H. et al. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia 50, 1442–1452 (2007).

    Article  CAS  Google Scholar 

  16. Lee, A.S. Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267–273 (1992).

    Article  CAS  Google Scholar 

  17. He, B. Viruses, endoplasmic reticulum stress and interferon responses. Cell Death Differ. 13, 393–403 (2006).

    Article  CAS  Google Scholar 

  18. Boden, G. et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57, 2438–2444 (2008).

    Article  CAS  Google Scholar 

  19. Ozcan, U. et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457–461 (2004).

    Article  Google Scholar 

  20. Eizirik, D.L., Cardozo, A.K. & Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29, 42–61 (2008).

    Article  CAS  Google Scholar 

  21. Gregor, M.F. et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58, 693–700 (2009).

    Article  CAS  Google Scholar 

  22. Ozawa, K. et al. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54, 657–663 (2005).

    Article  CAS  Google Scholar 

  23. Ozcan, U. et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137–1140 (2006).

    Article  Google Scholar 

  24. Tanti, J.F. et al. Alteration in insulin action: role of IRS-1 serine phosphorylation in the retroregulation of insulin signalling. Ann. Endocrinol. (Paris) 65, 43–48 (2004).

    Article  CAS  Google Scholar 

  25. Gao, Z. et al. Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Mol. Endocrinol. 18, 2024–2034 (2004).

    Article  CAS  Google Scholar 

  26. Herschkovitz, A. et al. Common inhibitory serine sites phosphorylated by IRS-1 kinases, triggered by insulin and inducers of insulin resistance. J. Biol. Chem. 282, 18018–18027 (2007).

    Article  CAS  Google Scholar 

  27. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. & Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881–891 (2001).

    Article  CAS  Google Scholar 

  28. Ron, D. & Hubbard, S.R. How IRE1 reacts to ER stress. Cell 132, 24–26 (2008).

    Article  CAS  Google Scholar 

  29. Ueki, K. et al. Positive and negative roles of p85α and p85β regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J. Biol. Chem. 278, 48453–48466 (2003).

    Article  CAS  Google Scholar 

  30. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nat. Genet. 21, 230–235 (1999).

    Article  CAS  Google Scholar 

  31. Taniguchi, C.M. et al. The p85α regulatory subunit of phosphoinositide 3-kinase potentiates c-Jun N-terminal kinase–mediated insulin resistance. Mol. Cell. Biol. 27, 2830–2840 (2007).

    Article  CAS  Google Scholar 

  32. Forler, D. et al. An efficient protein complex purification method for functional proteomics in higher eukaryotes. Nat. Biotechnol. 21, 89–92 (2003).

    Article  CAS  Google Scholar 

  33. Rigaut, G. et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17, 1030–1032 (1999).

    Article  CAS  Google Scholar 

  34. Tirosh, B., Iwakoshi, N.N., Glimcher, L.H. & Ploegh, H.L. Rapid turnover of unspliced Xbp-1 as a factor that modulates the unfolded protein response. J. Biol. Chem. 281, 5852–5860 (2006).

    Article  CAS  Google Scholar 

  35. Yoshida, H., Oku, M., Suzuki, M. & Mori, K. pXBP1U encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1S in mammalian ER stress response. J. Cell Biol. 172, 565–575 (2006).

    Article  CAS  Google Scholar 

  36. Fonseca, S.G., Lipson, K.L. & Urano, F. Endoplasmic reticulum stress signaling in pancreatic beta-cells. Antioxid. Redox Signal. 9, 2335–2344 (2007).

    Article  CAS  Google Scholar 

  37. Harding, H.P. & Ron, D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51 Suppl 3, S455–S461 (2002).

    Article  CAS  Google Scholar 

  38. Eizirik, D.L., Cardozo, A.K. & Cnop, M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr. Rev. 29, 42–61 (2008).

    Article  CAS  Google Scholar 

  39. Nakatani, Y. et al. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J. Biol. Chem. 280, 847–851 (2005).

    Article  CAS  Google Scholar 

  40. Shoelson, S.E., Lee, J. & Goldfine, A.B. Inflammation and insulin resistance. J. Clin. Invest. 116, 1793–1801 (2006).

    Article  CAS  Google Scholar 

  41. Shepherd, P.R., Withers, D.J. & Siddle, K. Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. Biochem. J. 333, 471–490 (1998).

    Article  CAS  Google Scholar 

  42. Duronio, V., Scheid, M.P. & Ettinger, S. Downstream signalling events regulated by phosphatidylinositol 3-kinase activity. Cell. Signal. 10, 233–239 (1998).

    Article  CAS  Google Scholar 

  43. Barbour, L.A. et al. Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145, 1144–1150 (2004).

    Article  CAS  Google Scholar 

  44. Khalfallah, Y., Sassolas, G., Borson-Chazot, F., Vega, N. & Vidal, H. Expression of insulin target genes in skeletal muscle and adipose tissue in adult patients with growth hormone deficiency: effect of one year recombinant human growth hormone therapy. J. Endocrinol. 171, 285–292 (2001).

    Article  CAS  Google Scholar 

  45. Barbour, L.A. et al. Human placental growth hormone increases expression of the p85 regulatory unit of phosphatidylinositol 3-kinase and triggers severe insulin resistance in skeletal muscle. Endocrinology 145, 1144–1150 (2004).

    Article  CAS  Google Scholar 

  46. Luo, J. & Cantley, L.C. The negative regulation of phosphoinositide 3-kinase signaling by p85 and it's implication in cancer. Cell Cycle 4, 1309–1312 (2005).

    Article  CAS  Google Scholar 

  47. Yeates, L.C., Gallegos, A., Kozikowski, A.P. & Powis, G. Down regulation of the expression of the p110, p85 and p55 subunits of phosphatidylinositol 3-kinase during colon cancer cell anchorage-independent growth. Anticancer Res. 19, 4171–4176 (1999).

    CAS  PubMed  Google Scholar 

  48. Fang, D. & Liu, Y.C. Proteolysis-independent regulation of PI3K by Cbl-b–mediated ubiquitination in T cells. Nat. Immunol. 2, 870–875 (2001).

    Article  CAS  Google Scholar 

  49. García, Z. et al. A PI3K activity–independent function of p85 regulatory subunit in control of mammalian cytokinesis. EMBO J. 25, 4740–4751 (2006).

    Article  Google Scholar 

  50. Park, S.W., Zhou, Y., Lee, J., Lu, A., Sun, C., Chung, J., Ueki, K. & Ozcan, U. Regulatory subunits of PI3K, p85α and p85β, interact with XBP1 and increase its nuclear translocation. Nat. Med. advance online publication, doi:10.1038/nm.2099 (28 March 2010).

  51. Yamamoto, K. et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6α and XBP1. Dev. Cell 13, 365–376 (2007).

    Article  CAS  Google Scholar 

  52. Mauvais-Jarvis, F. et al. Reduced expression of the murine p85α subunit of phosphoinositide 3-kinase improves insulin signaling and ameliorates diabetes. J. Clin. Invest. 109, 141–149 (2002).

    Article  CAS  Google Scholar 

  53. Chen, D. et al. p50α/p55α phosphoinositide 3-kinase knockout mice exhibit enhanced insulin sensitivity. Mol. Cell. Biol. 24, 320–329 (2004).

    Article  CAS  Google Scholar 

  54. Brachmann, S.M., Ueki, K., Engelman, J.A., Kahn, R.C. & Cantley, L.C. Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Mol. Cell. Biol. 25, 1596–1607 (2005).

    Article  CAS  Google Scholar 

  55. Wellen, K.E. & Hotamisligil, G.S. Inflammation, stress, and diabetes. J. Clin. Invest. 115, 1111–1119 (2005).

    Article  CAS  Google Scholar 

  56. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  Google Scholar 

  57. Kerouz, N.J., Hörsch, D., Pons, S. & Kahn, C.R. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J. Clin. Invest. 100, 3164–3172 (1997).

    Article  CAS  Google Scholar 

  58. Calfon, M. et al. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415, 92–96 (2002).

    Article  CAS  Google Scholar 

  59. Brüning, J.C., Winnay, J., Cheatham, B. & Kahn, C.R. Mol. Cell Biol. 17, 1513–1521 (1997).

    Article  Google Scholar 

  60. Marciniak, S.J. et al. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev. 18, 3066–3077 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank D. Ron (New York University School of Medicine) for providing the Flag–XBP-1u and Flag–XBP-1s expression plasmids. This work was supported by US National Institutes of Health grant DK55545 and National Institutes of Health training grant DK07260-30, as well as Core laboratory support from the Joslin Diabetes and Endocrine Research Center grant DK36836. We would also like to thank U. Ozcan for useful advice and discussion and S. Green and S. Flaherty for assistance in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.N.W. came up with the hypothesis, designed and performed the experiments, analyzed the data and wrote the manuscript. J.B. and M.A.M. designed and performed the experiments and analyzed the data. K.U. came up with the hypothesis and generated reagents. C.R.K. came up with the hypothesis, helped analyze the data and wrote the manuscript.

Corresponding author

Correspondence to C Ronald Kahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1412 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winnay, J., Boucher, J., Mori, M. et al. A regulatory subunit of phosphoinositide 3-kinase increases the nuclear accumulation of X-box–binding protein-1 to modulate the unfolded protein response. Nat Med 16, 438–445 (2010). https://doi.org/10.1038/nm.2121

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2121

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing