Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p38-dependent marking of inflammatory genes for increased NF-κB recruitment

Abstract

We found that inflammatory stimuli induce p38 mitogen-activated protein kinase–dependent phosphorylation and phosphoacetylation of histone H3; this selectively occurred on the promoters of a subset of stimulus-induced cytokine and chemokine genes. p38 activity was required to enhance the accessibility of the cryptic NF-κB binding sites contained in H3 phosphorylated promoters, which indicated that p38-dependent H3 phosphorylation may mark promoters for increased NF-κB recruitment. These results show that p38 plays an additional role in the induction of the inflammatory and immune response: the regulation of NF-κB recruitment to selected chromatin targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microbial products and CD40L induce phosphorylation and phosphoacetylation of histone H3 in primary human monocyte–derived DCs.
Figure 2: H3 phosphorylation and phosphoacetylation triggered by inflammatory stimuli occur through a p38-dependent pathway.
Figure 3: Phosphorylation of histone H3 occurs on a subset of LPS-induced cytokine and chemokine genes.
Figure 4: p38 activation is required for NF-κB recruitment to promoters undergoing H3 phosphorylation.
Figure 5: The intensity and duration of p38 activation in response to different agonists influences the NF-κB response.
Figure 6: The IκBα promoter undergoes a rapid and p38-independent H3 phosphorylation.

Similar content being viewed by others

References

  1. Kornberg, R. D. & Lorch, Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285–294 (1999).

    Article  CAS  Google Scholar 

  2. Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349–352 (1997).

    Article  CAS  Google Scholar 

  3. Cheung, P., Allis, C. D. & Sassone-Corsi, P. Signaling to chromatin through histone modifications. Cell 103, 263–271 (2000).

    Article  CAS  Google Scholar 

  4. Tse, C., Sera, T., Wolffe, A. P. & Hansen, J. C. Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell. Biol. 18, 4629–4638 (1998).

    Article  CAS  Google Scholar 

  5. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    Article  CAS  Google Scholar 

  6. Dhalluin, C. et al. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399, 491–496 (1999).

    Article  CAS  Google Scholar 

  7. Jacobson, R. H., Ladurner, A. G., King, D. S. & Tjian, R. Structure and function of a human TAFII250 double bromodomain module. Science 288, 1422–1425 (2000).

    Article  CAS  Google Scholar 

  8. Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).

    Article  CAS  Google Scholar 

  9. Bannister, A. J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).

    Article  CAS  Google Scholar 

  10. Nakayama, J., Rice, J. C., Strahl, B. D., Allis, C. D. & Grewal, S. I. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).

    Article  CAS  Google Scholar 

  11. Nielsen, S. J. et al. Rb targets histone H3 methylation and HP1 to promoters. Nature 412, 561–565 (2001).

    Article  CAS  Google Scholar 

  12. Vandel, L. et al. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol. Cell. Biol. 21, 6484–6494 (2001).

    Article  CAS  Google Scholar 

  13. Hwang, K. K., Eissenberg, J. C. & Worman, H. J. Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc. Natl Acad. Sci. USA 98, 11423–11427 (2001).

    Article  CAS  Google Scholar 

  14. Jacobs, S. A. et al. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J. 20, 5232–5241 (2001).

    Article  CAS  Google Scholar 

  15. Hendzel, M. J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  Google Scholar 

  16. Van Hooser, A., Goodrich, D. W., Allis, C. D., Brinkley, B. R. & Mancini, M. A. Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J. Cell. Sci. 111, 3497–3506 (1998).

    CAS  PubMed  Google Scholar 

  17. Wei, Y., Yu, L., Bowen, J., Gorovsky, M. A. & Allis, C. D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97, 99–109 (1999).

    Article  CAS  Google Scholar 

  18. Mahadevan, L. C., Willis, A. C. & Barratt, M. J. Rapid histone H3 phosphorylation in response to growth factors, phorbol esters, okadaic acid, and protein synthesis inhibitors. Cell 65, 775–783 (1991).

    Article  CAS  Google Scholar 

  19. Thomson, S. et al. The nucleosomal response associated with immediate-early gene induction is mediated via alternative MAP kinase cascades: MSK1 as a potential histone H3/HMG-14 kinase. EMBO J. 18, 4779–4793 (1999).

    Article  CAS  Google Scholar 

  20. Clayton, A. L., Rose, S., Barratt, M. J. & Mahadevan, L. C. Phosphoacetylation of histone H3 on c-fos- and c-jun-associated nucleosomes upon gene activation. EMBO J. 19, 3714–3726 (2000).

    Article  CAS  Google Scholar 

  21. Cheung, P. et al. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell. 5, 905–915 (2000).

    Article  CAS  Google Scholar 

  22. Lo, W. S. et al. Phosphorylation of serine 10 in histone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol. Cell. 5, 917–926 (2000).

    Article  CAS  Google Scholar 

  23. Nowak, S. J. & Corces, V. G. Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev. 14, 3003–3013 (2000).

    Article  CAS  Google Scholar 

  24. Sassone-Corsi, P. et al. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science 285, 886–891 (1999).

    Article  CAS  Google Scholar 

  25. Thomson, S., Mahadevan, L. C. & Clayton, A. L. MAP kinase-mediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell. Dev. Biol. 10, 205–214 (1999).

    Article  CAS  Google Scholar 

  26. Lo, W. S. et al. Snf1 — a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293, 1142–1146 (2001).

    Article  CAS  Google Scholar 

  27. Parvin, J. D. & Young, R. A. Regulatory targets in the RNA polymerase II holoenzyme. Curr. Opin. Genet. Dev. 8, 565–570 (1998).

    Article  CAS  Google Scholar 

  28. Chadee, D. N. et al. Increased Ser10 phosphorylation of histone H3 in mitogen-stimulated and oncogene-transformed mouse fibroblasts. J. Biol. Chem. 274, 24914–24920 (1999).

    Article  CAS  Google Scholar 

  29. English, J. et al. New insights into the control of MAP kinase pathways. Exp. Cell. Res. 253, 255–270 (1999).

    Article  CAS  Google Scholar 

  30. Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell Signal. 12, 1–13 (2000).

    Article  CAS  Google Scholar 

  31. Davis, R. J. Signal transduction by the JNK group of MAP kinases. Cell 103, 239–252 (2000).

    Article  CAS  Google Scholar 

  32. Kyriakis, J. M. & Avruch, J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807–869 (2001).

    Article  CAS  Google Scholar 

  33. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  CAS  Google Scholar 

  34. Regnier, C. H. et al. Identification and characterization of an IκB kinase. Cell 90, 373–383 (1997).

    Article  CAS  Google Scholar 

  35. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  36. Ghosh, S., May, M. J. & Kopp, E. B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  37. Baldwin, A. S. Jr The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–683 (1996).

    Article  CAS  Google Scholar 

  38. Saccani, S., Pantano, S. & Natoli, G. Two waves of nuclear factor κB recruitment to target promoters. J. Exp. Med. 193, 1351–1359 (2001).

    Article  CAS  Google Scholar 

  39. Weinmann, A. S., Plevy, S. E. & Smale, S. T. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 11, 665–675 (1999).

    Article  CAS  Google Scholar 

  40. Cella, M., Sallusto, F. & Lanzavecchia, A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10–16 (1997).

    Article  CAS  Google Scholar 

  41. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  42. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  43. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

  44. Hecht, A. & Grunstein, M. Mapping DNA interaction sites of chromosomal proteins using immunoprecipitation and polymerase chain reaction. Meth. Enzymol. 304, 399–414 (1999).

    Article  CAS  Google Scholar 

  45. Weinmann A. S. et al. Nucleosome remodeling at the IL-12 p40 promoter is a TLR-dependent, Rel-independent event. Nature Immunol. 2, 51–57 (2001).

    Article  CAS  Google Scholar 

  46. Alepuz, P. M., Jovanovic, A., Reiser, V. & Ammerer, G. Stress-induced MAP kinase Hog 1 is part of transcription activation complexes. Mol. Cell. 7, 767–777 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Lanzavecchia, M. Molinari, F. Sallusto, M. Thelen, R. Gherzi and M. Karin for useful comments on the manuscript and members of F. Sallusto's lab for help with DC culture and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioacchino Natoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccani, S., Pantano, S. & Natoli, G. p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nat Immunol 3, 69–75 (2002). https://doi.org/10.1038/ni748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni748

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing