Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Age-related changes in lymphocyte development and function

Abstract

The effects of aging on the immune system are widespread and extend from hematopoietic stem cells and lymphoid progenitors in the bone marrow and thymus to mature lymphocytes in secondary lymphoid organs. These changes combine to result in a diminution of immune responsiveness in the elderly. This review aims to provide an overview of age-related changes in lymphocyte development and function and discusses current controversies in the field of aging research.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bone marrow from old mice does not efficiently generate lymphoid progeny.
Figure 2: Primary lymphocyte development in the bone marrow and thymus.
Figure 3: Age-related changes in B and T cells in secondary lymphoid organs.

Similar content being viewed by others

References

  1. Kondo, M. et al. Biology of hematopoietic stem cells. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Geiger, H. & Van Zant, G. The aging of lympho-hematopoietic stem cells. Nat. Immunol. 3, 329–333 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Henckaerts, E. et al. Genetically determined variation in the number of phenotypically defined hematopoietic progenitor and stem cells and in their response to early acting cytokines. Blood 99, 3947–3954 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. De Haan, G. et al. A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood 100, 2056–2062 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Morrison, S.J. et al. A genetic determnant that specifically regulates the frequency of hematopoietic stem cells. J. Immunol. 168, 635–642 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Morrison, S.J., Wandycz, A.M., Akashi, K., Globerson, A. & Weissman, I.L. 1996. The aging of hematopoietic stem cells. Nat. Med. 9, 1011–1016 (1996).

    Article  Google Scholar 

  7. Harrison, D. Long-term erythropoietic repopulating ability of old, young and fetal stem cells. J. Exp. Med. 157, 1496–1504 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Tyan, M.L. Age-related decrease in mouse T cell progenitors. J. Immunol. 118, 846–851 (1977).

    CAS  PubMed  Google Scholar 

  9. Hirokawa, K., Kubo, S., Utsuyama, M., Kurashima, C. & Sado, T. Age-related change in the potential of bone marrow cells to repopulate the thymus and splenic T cells in mice. Cell. Immunol. 100, 443–451 (1986),

    Article  CAS  PubMed  Google Scholar 

  10. Sharp, A., Kukulansky, T. & Globerson, A. In vitro analysis of age-related changes in the developmental potential of bone marrow thymocyte progenitors. Eur. J. Immunol. 20, 2541–2546 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Sudo, K., Ema, H., Morita, Y. & Nakauchi, H. Age-associated characteristics of murine hemtopoietic stem cells. J. Exp. Med. 192, 1273–1280 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miller, J.P. & Allman, D. The decline in B lymphopoiesis in aged mice reflects loss of very early B-lineage precursors. J. Immunol. 171, 2326–2330 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Chertkov, J.L. & Gurevitch, O.A. Age-related changes in hemopoietic microenvironment. Enhanced growth of hemopoietic stroma and weakened genetic resistance of hemopoietic cells in old mice. Exp. Gerontol. 16, 195–198 (1981).

    Article  CAS  PubMed  Google Scholar 

  14. Hotta, T., Hirabayshi, N., Utsumi, M., Murate, T. & Yamada, H. Age related changes in the function of hemopoietic stroma in mice. Exp. Hematol. 8, 933–936 (1980).

    CAS  PubMed  Google Scholar 

  15. Lamberts, S.W.J., van den Beld, A.W. & van der Lely, A.-J. The endocrinology of aging. Science 278, 419–424 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. French, R.A. et al. Age-associated loss of bone marrow hematopoietic cells is reversed by GH and accompanies thymic reconstitution. Endocrinology 143, 690–699 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Kline, G.H., Hayden, T.A. & Klinman, N.R. B cell maintenance in aged mice reflects both increased B cell longevity and decreased B cell generation. J. Immunol. 162, 3342–3349 (1999).

    CAS  PubMed  Google Scholar 

  19. Johnson, K.M., Owen, K. & Witte, P.L. Aging and developmental transitions in the B cell lineage. Int. Immunol. 14, 1313–1323 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Cancro, M.P. & Smith, S.H. Peripheral B cell selection and homeostasis. Immunol. Res. 27, 141–148 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Szabo, P., Shen, S., Telford, W. & Weksler, M.E. Impaired rearrangement of IgH V to DJ segments in bone marrow pro-B cells from old mice. Cell. Immunol. 222, 78–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Frasca, D., Nguyen, D., Riley, R.L. & Blomberg, B.B. Decreased E12 and/orE47 transcription factor activity in the bone marrow as well as in the spleen of aged mice. J. Immunol. 170, 719–726 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Sherwood, E.M., Xu, W., King, A.M., Blomberg, B.B. & Riley, R.L. The reduced expression of surrogate light chains in B cell precursors from senescent BALB/c mice is associated with decreased E2A proteins. Mech. Ageing Dev. 118, 45–59 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Johnson, S.A., Rozzo, S.J. & Cambier, J.C. Aging-dependent exclusion of antigen- inexperienced cells from the peripheral B cell repertoire. J. Immunol. 168, 5014–5023 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Li, F., Jin, F., Freitas, A., Szabo, P.l. & Weksler, M.E. Impaired regeneration of the peripheral B cell repertoire from bone marrow following lymphopenia. Eur. J. Immunol. 31, 500–505 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Stephan, R.P., Reilly, C.R. & Witte, P.L. Impaired ability of bone marrow stromal cells to support B-lymphopoiesis with age. Blood 91, 75–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Stephan, R.P., Lill-Elghanian, D.A. & Witte, P.L. Development of B cells in aged mice. Decline in the ability of pro-B cells to respond to IL-7 but not to other growth factors. J. Immunol. 158, 1598–1609 (1997).

    CAS  PubMed  Google Scholar 

  28. Corcoran, A.E., Riddell, A., Krooshoop, D. & Venkitaraman, A.R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. LeBien, T. Fate of human B-cell precursors. Blood 96, 9–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Dorshkind, K. et al. Effects of housing on the thymic deficiency in dwarf mice and its reversal by growth hormone administration. Clin. Immunol. 109, 197–202 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kincade, P.W. et al. Early B-lymphocyte precursors and their regulation by sex steroids. Immunol. Rev. 175, 128–137 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Chung, J.B., Silverman, M. & Monroe, J.G. Transitional B cells: step by step towards immune competence. Trends Immunol. 24, 342–348 (2003).

    Article  CAS  Google Scholar 

  33. Makinodan, T. & Kay, M.M. Age influence on the immune system. Adv. Immunol. 29, 287–330 (1980).

    Article  CAS  PubMed  Google Scholar 

  34. Goidl, E.A., Innes, J.B. & Weksler, M.E. Immunological studies of aging. II. Loss of IgG and high avidity plaque-forming cells and increased suppressor cell activity in aging mice. J. Exp. Med. 144, 1037–1048 (1976).

    Article  CAS  PubMed  Google Scholar 

  35. Zharhary, D., Segev, Y. & Gershon, H. The affinity and spectrum of cross reactivity of antibody production in senescent mice: the IgM response. Mech. Ageing Dev. 6, 385–392 (1977).

    Article  CAS  PubMed  Google Scholar 

  36. Nicoletti, C., Yang, X. & Cerny, J. Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae. J. Immunol. 150, 543–549 (1993).

    CAS  PubMed  Google Scholar 

  37. Riley, S.C. et al. Altered VH gene segment utilization in the response to phosphorylcholine by aged mice. J. Immunol. 143, 3798–805 (1989).

    CAS  PubMed  Google Scholar 

  38. Nicoletti, C. & Cerny, J. The repertoire diversity and magnitude of antibody responses to bacterial antigens in aged mice: I. Age-associated changes in antibody responses differ according to the mouse strain. Cell. Immunol. 133, 72–83 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, B., Han, S., Takahashi, Y. & Kelsoe, G. Immunosenescence and germinal center reaction. Immunol. Rev. 160, 63–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Whisler, R.L. & Grants, I.S. Age-related alterations in the activation and expression of phosphotyrosine kinases and protein kinase C (PKC) among human B cells. Mech. Ageing Dev. 71, 31–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  41. Jacobson, E.B., Caporale, L.H. & Thorbecke, G.J. Effect of thymus cell injections on germinal center formation in lymphoid tissues of nude (thymusless) mice. Cell. Immunol. 13, 416–430 (1974).

    Article  CAS  PubMed  Google Scholar 

  42. Maizels, N. & Bothwell, A. The T-cell-independent immune response to the hapten NP uses a large repertoire of heavy chain genes. Cell 43, 715–720 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, X., Stedra, J. & Cerny, J. Relative contribution of T and B cells to hypermutation and selection of the antibody repertoire in germinal centers of aged mice. J. Exp. Med. 183, 959–970 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Benner, R. & Haaijman, J.J. Aging of the lymphoid system at the organ level. With special reference to the bone marrow as site of antibody production. Dev. Comp. Immunol. 4, 591–603 (1980).

    Article  CAS  PubMed  Google Scholar 

  45. Smith, K.G., Light, A., Nossal, G.J. & Tarlinton, D.M. The extent of affinity maturation differs between the memory and antibody-forming cell compartments in the primary immune response. EMBO J. 16, 2996–3006 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takahashi, Y., Dutta, P.R., Cerasoli, D.M. & Kelsoe, G. In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J. Exp. Med. 187, 885–895 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Han, S. et al. Enhanced differentiation of splenic plasma cells but diminished long-lived high-affinity bone marrow plasma cells in aged mice. J. Immunol. 170, 1267–1273 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Donskoy, E., Foss, D. & Goldschneider, I. Gated importation of prothymocytes by adult mouse thymus is coordinated with their periodic mobilization from bone marrow. J. Immunol. 171, 3568–3575 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Ceredig, R. & Rolink, T. A positive look at double-negative thymocytes. Nat. Rev. Immunol. 2, 2–10 (2002).

    Article  CAS  Google Scholar 

  50. Haynes, B.F., Markert, M.L., Sempowski, G.D., Patel, D.D. & Hale, L.P. The role of the thymus in immune reconstitution in aging, bone marrow transplantation, and HIV-I infection. Annu. Rev. Immunol. 18, 529–560 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Jamieson, B.D. et al. Generation of functional thymocytes in the human adult. Immunity 10, 569–575 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Hsu, H.C. et al. Age-related thymic involution in C57BL/6J x DBA/2J recombinant-inbred mice maps to chromosomes 9 and 10. Genes Immunol. 4, 402–410 (2003).

    Article  CAS  Google Scholar 

  53. Aspinall, R. Age-associated thymic atrophy in the mouse is due to a deficiency affecting rearrangement of the TCR during intrathymic T cell development. J. Immunol. 158, 3037–3045 (1997).

    CAS  PubMed  Google Scholar 

  54. Aspinall, R. & Andrew, D. Age-associated thymic atrophy is not associated with a deficiency in the CD44+CD25CD3CD4CD8 thymocyte population. Cell. Immunol. 212, 150–157 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Thoman, M.L. The pattern of T lymphocyte differentiation is altered during thymic involution. Mech. Ageing Dev. 82, 155–170 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Thoman, M.L. Early steps in T cell development are affected by aging. Cell. Immunol. 178, 117–123 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol. 4, 866–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Aspinall, R. & Andrew, D. Thymic atrophy in the mouse is a soluble problem of the thymic environment. Vaccine 18, 1629–1637 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Mackall, C.L., Punt, J.A., Morgan, P., Farr, A.G. & Gress, R.E. Thymic function in young/old chimeras: substantial thymic T cell regenerative capacity despite irreversible age-associated thymic involution. Eur. J. Immunol. 28, 1886–1893 (1998).

    Article  CAS  PubMed  Google Scholar 

  61. Andrew, D. & Aspinall, R. Age-associated thymic atrophy is linked to a decline in IL-7 production. Exp. Gerontol. 37, 455–463 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Ortman, C.L., Dittmar, K.A., Witte, P.L. & Le, P.T. Molecular characterization of the mouse involuted thymus: aberrations in expression of transcription regulators in thymocyte and epithelial compartments. Int. Immunol. 14, 813–822 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Anderson, G. & Jenkinson, E.J. Lymphostromal interactions in thymic development and function. Nat. Rev. Immunol. 1, 31–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Klug, D.B., Carter, C., Gimenez-Conti, I.B. & Richie, E.R. Thymocyte-independent and thymocyte dependent phases of epithelial patterning in fetal thymus. J. Immunol. 169, 2842–2845 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Shores, E.W., Van Ewijk, W. & Singer, A. Maturation of medullary thymic epithelium requires thymocytes expressing fully assembled CD3-TCR complexes. Int. Immunol. 6, 1393–1402 (1994).

    Article  CAS  PubMed  Google Scholar 

  66. Blackburn, C.C. et al. One for all and all for one: thymic epithelial stem cells and regeneration. Trends Immunol. 23, 391–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Gill, J., Malin, M., Hollander, G.A. & Boyd, R. Generation of a complete thymic microenvironment by MTS24+ thymic epithelial cells. Nat. Immunol. 3, 635–642 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Montecino-Rodriguez, E., Clark, R. & Dorshkind, K. Effects of insulin-like growth factor administration and bone marrow transplantation on thymopoiesis in aged mice. Endocrinology 139, 4120–4126 (1998).

    Article  CAS  PubMed  Google Scholar 

  69. Savino, W. & Dardenne, M. Neuroendocrine control of thymus physiology. Endocrine Rev. 21, 412–443 (2000).

    CAS  Google Scholar 

  70. Olsen, N.J., Viselli, S.M., Fan, J. & Kovacs, W.J. Androgens accelerate thymocyte apoptosis. Endocrinology 139, 748–752 (1998).

    Article  CAS  PubMed  Google Scholar 

  71. Utsuyama, M. & Hirokawa, K. Hypertrophy of the thymus and restoration of immune functions in mice and rats by gonadectomy. Mech. Ageing Dev. 47, 175–185 (1989).

    Article  CAS  PubMed  Google Scholar 

  72. Kelley, K.W. et al. GH3 pituitary adenoma cells can reverse thymic aging in rats. Proc. Natl. Acad. Sci. USA 85, 5663–5667 (1986).

    Article  Google Scholar 

  73. Napolitano, L.A. et al. Increased thymic mass and circulating naïve CD4 T cells in HIV-1 infected adults treated with growth hormone. AIDS 16, 1103–1111 (2002).

    Article  CAS  PubMed  Google Scholar 

  74. Andrew, D. & Aspinall, R. IL-7 and not stem cell factor reverses both the increase in apoptosis and the decline in thymopoiesis seen in aged mice. J. Immunol. 166, 1524–1530 (2001).

    Article  CAS  PubMed  Google Scholar 

  75. Effros, R.B., Cai, Z. & Linton, P.J. CD8 T cells and aging. Crit. Rev. Immunol. 23, 45–64 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Grubeck-Loebenstein, B. & Wick, G. The aging of the immune system. Adv. Immunol. 80, 243–284 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Linton, P.J., Haynes, L., Klinman, N.R. & Swain, S.L. Antigen-independent changes in naive CD4 T cells with aging. J. Exp. Med. 184, 1891–1900 (1996).

    Article  CAS  PubMed  Google Scholar 

  78. Haynes, L., Eaton, S.M., Burns, E.M., Randall, T.D. & Swain, S.L. CD4 T cell memory derived from young naïve cells functions well into old age, while memory generated from aged naïve cells functions poorly. Proc. Natl. Acad. Sci. USA 100, 15053–15058 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Po, J.L., Gardner, E.M., Anaraki, F., Katsikis, P.D. & Murasko, D.M. Age-associated decrease in virus-specific CD8+ T lymphocytes during primary influenza infection. Mech. Ageing Dev. 123, 1167–1181 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Kapasi, Z.F., Murali-Krishna, K., McRae, M.L. & Ahmed, R. Defective generation but normal maintenance of memory T cells in old mice. Eur. J. Immunol. 32, 1567–1573 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  82. Lerner, A., Yamada, T. & Miller, R.A. Pgp-1hi T lymphocytes accumulate with age in mice and respond poorly to concanavalin A. Eur. J. Immunol. 19, 977–982 (1989).

    Article  CAS  PubMed  Google Scholar 

  83. Miller, R.A., Garcia, G., Kirk, C.J. & Witkowski, J.M. Early activation defects in T lymphocytes from aged mice. Immunol. Rev. 160, 79–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  84. Nel, A.E. & Slaughter, N. T-cell activation through the antigen receptor. Part 2. A role of signaling cascades in T-cell differentitation, anergy, immune senescence, and development of immunotherapy. J. Allergy Clin. Immunol. 109, 901–915 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Hirokawa, K. Age-related changes of signal transduction in T cells. Exp. Gerontol. 34, 7–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Garcia, G.G. & Miller, R.A. Single-cell analyses reveal two defects in peptide-specific activation of naïve cells from aged mice. J. Immunol. 166, 3151–3157 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Callahan, J.E., Kappler, J.W. & Marrack, P. Unexpected expansions of CD8-bearing cells in old mice. J. Immunol. 151, 6657–6669 (1993).

    CAS  PubMed  Google Scholar 

  88. Schwab, R. et al. Expanded CD4+ and CD8+ T cell clones in elderly humans. J. Immunol. 158, 4493–4499 (1997).

    CAS  PubMed  Google Scholar 

  89. Ku, C.C., Kotzin, B., Kappler, J. & Marrack, P. CD8+ T cell clones in old mice. Immunol. Rev. 160, 139–144 (2000).

    Article  Google Scholar 

  90. Effros, R.B. Long-term immunological memory against viruses. Mech. Ageing Dev. 121, 161–171 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Khan, N. et al. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 169, 1984–1992 (2002).

    Article  CAS  PubMed  Google Scholar 

  92. Tough, D.F., Borrow, P. & Sprent, J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 272, 1947–1950 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Lloberas, J. & Celada, A. Effects of aging on macrophage function. Exp. Gerontol. 37, 1323–1329 (2003).

    Google Scholar 

  94. Renshaw, M., Rockwell, J., Engleman, C., Gewirtz, A., Katz, J. & Sambhara, S. Impaired toll-like receptor expression and function in aging. J. Immunol. 169, 4697–4701 (2002).

    Article  CAS  PubMed  Google Scholar 

  95. Pawelec, G., Solana, R., Remarque, E. & Mariani, E. Impact of aging on innate immunity. J. Leukoc. Biol. 64, 703–712 (1998).

    Article  CAS  PubMed  Google Scholar 

  96. Uyemura, K., Castle, S.C. & Makinodan, T. The frail elderly: role of dendritic cells in the susceptibility of infection. Mech. Ageing Dev. 123, 955–962 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Sprecher, E. et al. Effect of aging on epidermal dendritic cells populations in C57BL/6J mice. J. Invest. Dermatol. 94, 247–253 (1990).

    Article  CAS  PubMed  Google Scholar 

  98. Solana, R. & Mariani, E. NK and NK/T cells in human senescence. Vaccine 18, 1613–1620 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Issa, J.-P. Age-related epigenetic changes and the immune system. Clin. Immunol. 109, 103–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  100. Pinto, A., Fillippi, R., Friegeri, F., Corazelli, G. & Nomanno, N. Aging and the hemopoietic system. Crit. Rev. Oncol. Hematol. 48, S2–S12 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The continued support and encouragement of R. Fuldner from the National Institute of Aging is acknowledged. Supported by National Institutes of Health Grants AG21450 (K.D.), AG01743 (P.J.L.) and AG19249 (P.J.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Dorshkind.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linton, P., Dorshkind, K. Age-related changes in lymphocyte development and function. Nat Immunol 5, 133–139 (2004). https://doi.org/10.1038/ni1033

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1033

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing