Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells

Abstract

Foxo transcription factors regulate cell cycle progression, cell survival and DNA-repair pathways. Here we demonstrate that deficiency in Foxo3 resulted in greater expansion of T cell populations after viral infection. This exaggerated expansion was not T cell intrinsic. Instead, it was caused by the enhanced capacity of Foxo3-deficient dendritic cells to sustain T cell viability by producing more interleukin 6. Stimulation of dendritic cells mediated by the coinhibitory molecule CTLA-4 induced nuclear localization of Foxo3, which in turn inhibited the production of interleukin 6 and tumor necrosis factor. Thus, Foxo3 acts to constrain the production of key inflammatory cytokines by dendritic cells and to control T cell survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Foxo3-deficient mice show no spontaneous T cell activation.
Figure 2: Foxo3 regulates the magnitude of an LCMV-induced immune response.
Figure 3: Foxo3Kca mice have more DCs and greater activation of DCs.
Figure 4: Greater immunogenicity of LCMV-infected Foxo3-deficient DCs.
Figure 5: Enhanced T cell responses induced by Foxo3Kca BMDCs.
Figure 6: IL-6 synthesis by Foxo3-deficient DCs is involved in enhanced T cell survival.
Figure 7: Production of IL-6 and TNF by stimulated DCs is inhibited by CTLA-4–Ig stimulation in a Foxo3-dependent way.

Similar content being viewed by others

References

  1. Calnan, D.R. & Brunet, A. The FoxO code. Oncogene 27, 2276–2288 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Galili, N. et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat. Genet. 5, 230–235 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Hillion, J., Le Coniat, M., Jonveaux, P., Berger, R. & Bernard, O.A. AF6q21, a novel partner of the MLL gene in t(6;11)(q21;q23), defines a forkhead transcriptional factor subfamily. Blood 90, 3714–3719 (1997).

    CAS  PubMed  Google Scholar 

  4. Corral, J. et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc. Natl. Acad. Sci. USA 90, 8538–8542 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacobs, F.M. et al. FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J. Biol. Chem. 278, 35959–35967 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Barthel, A., Schmoll, D. & Unterman, T.G. FoxO proteins in insulin action and metabolism. Trends Endocrinol. Metab. 16, 183–189 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Biggs, W.H. III, Meisenhelder, J., Hunter, T., Cavenee, W.K. & Arden, K. C. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc. Natl. Acad. Sci. USA 96, 7421–7426 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Kops, G.J. et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398, 630–634 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. van der Horst, A. & Burgering, B.M. Stressing the role of FoxO proteins in lifespan and disease. Nat. Rev. Mol. Cell Biol. 8, 440–450 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Motta, M.C. et al. Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Stahl, M. et al. The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J. Immunol. 168, 5024–5031 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Dijkers, P.F. et al. Forkhead transcription factor FKHR-L1 modulates cytokine-dependent transcriptional regulation of p27KIP1. Mol. Cell. Biol. 20, 9138–9148 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barata, J.T. et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J. Exp. Med. 200, 659–669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Peng, S.L. Foxo in the immune system. Oncogene 27, 2337–2344 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. You, H. et al. FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal. J. Exp. Med. 203, 1657–1663 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Riou, C. et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med. 204, 79–91 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lin, L., Hron, J.D. & Peng, S.L. Regulation of NF-κB, Th activation, and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 21, 203–213 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat. Immunol. 5, 1134–1142 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Mellor, A.L. & Munn, D.H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762–774 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Hosaka, T. et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc. Natl. Acad. Sci. USA 101, 2975–2980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Marinkovic, D. et al. Foxo3 is required for the regulation of oxidative stress in erythropoiesis. J. Clin. Invest. 117, 2133–2144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Greer, E.L. & Brunet, A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24, 7410–7425 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Castrillon, D.H., Miao, L., Kollipara, R., Horner, J.W. & DePinho, R.A. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 301, 215–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Villadangos, J.A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Oldstone, M.B. Biology and pathogenesis of lymphocytic choriomeningitis virus infection. Curr. Top. Microbiol. Immunol. 263, 83–117 (2002).

    CAS  PubMed  Google Scholar 

  29. Rosas, M. et al. IL-5-mediated eosinophil survival requires inhibition of GSK-3 and correlates with β-catenin relocalization. J. Leukoc. Biol. 80, 186–195 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Rochman, I., Paul, W.E. & Ben-Sasson, S.Z. IL-6 increases primed cell expansion and survival. J. Immunol. 174, 4761–4767 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Fallarino, F. et al. CTLA-4-Ig activates forkhead transcription factors and protects dendritic cells from oxidative stress in nonobese diabetic mice. J. Exp. Med. 200, 1051–1062 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leach, D.R., Krummel, M.F. & Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Karandikar, N.J., Vanderlugt, C.L., Walunas, T.L., Miller, S.D. & Bluestone, J.A. CTLA-4: a negative regulator of autoimmune disease. J. Exp. Med. 184, 783–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Zang, X. & Allison, J.P. The B7 family and cancer therapy: costimulation and coinhibition. Clin. Cancer Res. 13, 5271–5279 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Botto, M. et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet. 19, 56–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Bickerstaff, M.C. et al. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat. Med. 5, 694–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Santiago-Raber, M.L. et al. Role of cyclin kinase inhibitor p21 in systemic autoimmunity. J. Immunol. 167, 4067–4074 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Kishimoto, T. Interleukin-6: from basic science to medicine–40 years in immunology. Annu. Rev. Immunol. 23, 1–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Teague, T.K., Marrack, P., Kappler, J.W. & Vella, A.T. IL-6 rescues resting mouse T cells from apoptosis. J. Immunol. 158, 5791–5796 (1997).

    CAS  PubMed  Google Scholar 

  41. Keir, M.E. & Sharpe, A.H. The B7/CD28 costimulatory family in autoimmunity. Immunol. Rev. 204, 128–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat. Immunol. 3, 1097–1101 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Hara, T. et al. High-affinity uptake of kynurenine and nitric oxide-mediated inhibition of indoleamine 2,3-dioxygenase in bone marrow-derived myeloid dendritic cells. Immunol. Lett. 116, 95–102 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. van Stipdonk, M.J., Lemmens, E.E. & Schoenberger, S.P. Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2, 423–429 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.P. Allison (Sloan-Kettering Memorial Hospital) and J.A. Bluestone (University of California at San Diego) for CTLA-4-specific blocking antibodies; A. Brunet (Stanford University) for Foxo3-specific antibody; L. Lefrançois (University of Connecticut Health Center) for OVA-expressing vesicular stomatitis virus; L. Mack and E. Zuniga for assistance with virus titers; and M. Niwa for microscope facility use. Supported by the American Cancer Society (R.A.D.), the Robert A. and Renee E. Belfer Institute for Innovative Cancer Research (R.A.D.), the US National Cancer Institute (R.A.D.), the Division of Biological Sciences of the University of California, San Diego (S.M.H.) and the Fondation pour la Recherche Médicale (A.S.D.).

Author information

Authors and Affiliations

Authors

Contributions

D.R.B. initiated the project and did lymphocyte characterization and LCMV infection under the supervision of S.M.H.; A.S.D. designed and did the remaining experiments in collaboration with D.R.B., I.L.C., Y.M.K. and S.M.H.; A.B. provided expertise in fluorescence microscopy analysis; R.A.D. and D.H.C. produced Foxo3−/− mice and provided intellectual input on the data; K.C.A. provided Foxo3Kca mice; S.M.H. initiated the project with input from R.A.D. and K.C.A. and supervised the experiments; and A.S.D. and S.M.H. wrote the manuscript with editorial and intellectual contributions from the other authors.

Corresponding author

Correspondence to Stephen M Hedrick.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 5596 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dejean, A., Beisner, D., Ch'en, I. et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol 10, 504–513 (2009). https://doi.org/10.1038/ni.1729

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1729

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing