Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association analysis identifies six new loci associated with forced vital capacity

Abstract

Forced vital capacity (FVC), a spirometric measure of pulmonary function, reflects lung volume and is used to diagnose and monitor lung diseases. We performed genome-wide association study meta-analysis of FVC in 52,253 individuals from 26 studies and followed up the top associations in 32,917 additional individuals of European ancestry. We found six new regions associated at genome-wide significance (P < 5 × 10−8) with FVC in or near EFEMP1, BMP6, MIR129-2HSD17B12, PRDM11, WWOX and KCNJ2. Two loci previously associated with spirometric measures (GSTCD and PTCH1) were related to FVC. Newly implicated regions were followed up in samples from African-American, Korean, Chinese and Hispanic individuals. We detected transcripts for all six newly implicated genes in human lung tissue. The new loci may inform mechanisms involved in lung development and the pathogenesis of restrictive lung disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of our staged analysis to identify new variants influencing FVC.
Figure 2: Manhattan plot for the association results for FVC.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Wilk, J.B. et al. Evidence for major genes influencing pulmonary function in the NHLBI family heart study. Genet. Epidemiol. 19, 81–94 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Zappala, C.J. et al. Marginal decline in forced vital capacity is associated with a poor outcome in idiopathic pulmonary fibrosis. Eur. Respir. J. 35, 830–836 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Raghu, G. et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 183, 788–824 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ashley, F., Kannel, W.B., Sorlie, P.D. & Masson, R. Pulmonary function: relation to aging, cigarette habit, and mortality. Ann. Intern. Med. 82, 739–745 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Burney, P.G. & Hooper, R. Forced vital capacity, airway obstruction and survival in a general population sample from the USA. Thorax 66, 49–54 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lee, H.M., Le, H., Lee, B.T., Lopez, V.A. & Wong, N.D. Forced vital capacity paired with Framingham Risk Score for prediction of all-cause mortality. Eur. Respir. J. 36, 1002–1006 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Lange, P., Nyboe, J., Appleyard, M., Jensen, G. & Schnohr, P. Spirometric findings and mortality in never-smokers. J. Clin. Epidemiol. 43, 867–873 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Kannel, W.B., Hubert, H. & Lew, E.A. Vital capacity as a predictor of cardiovascular disease: the Framingham study. Am. Heart J. 105, 311–315 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Palmer, L.J. et al. Familial aggregation and heritability of adult lung function: results from the Busselton Health Study. Eur. Respir. J. 17, 696–702 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. van Putte-Katier, N. et al. Relationship between parental lung function and their children's lung function early in life. Eur. Respir. J. 38, 664–671 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Wilk, J.B. et al. A genome-wide association study of pulmonary function measures in the Framingham Heart Study. PLoS Genet. 5, e1000429 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Repapi, E. et al. Genome-wide association study identifies five loci associated with lung function. Nat. Genet. 42, 36–44 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Hancock, D.B. et al. Meta-analyses of genome-wide association studies identify multiple loci associated with pulmonary function. Nat. Genet. 42, 45–52 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Soler Artigas, M. et al. Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat. Genet. 43, 1082–1090 (2011).

    Article  PubMed  CAS  Google Scholar 

  15. Sung, J. et al. The Korean Twin Registry—methods, current stage, and interim results. Twin Res. 5, 394–400 (2002).

    PubMed  Google Scholar 

  16. Sung, J. et al. Healthy Twin: a twin-family study of Korea—protocols and current status. Twin Res. Hum. Genet. 9, 844–848 (2006).

    Article  PubMed  Google Scholar 

  17. Gombojav, B. et al. The Healthy Twin Study, Korea updates: resources for omics and genome epidemiology studies. Twin Res. Hum. Genet. 16, 241–245 (2013).

    Article  PubMed  Google Scholar 

  18. Cho, Y.S. et al. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat. Genet. 41, 527–534 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  21. Nyholt, D.R. A simple correction for multiple testing for single-nucleotide polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74, 765–769 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, J. & Ji, L. Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb.) 95, 221–227 (2005).

    Article  CAS  Google Scholar 

  23. Musunuru, K. et al. Candidate gene association resource (CARe): design, methods, and proof of concept. Circ Cardiovasc Genet 3, 267–275 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carlson, C.S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 11, e1001661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, K., Cui, S., Chang, S., Zhang, L. & Wang, J. i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res. 38, W90–W95 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Gibbs, J.R. et al. Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet. 6, e1000952 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dimas, A.S. et al. Common regulatory variation impacts gene expression in a cell type–dependent manner. Science 325, 1246–1250 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Genotype-Tissue Expression Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580–585 (2013).

  30. Boyle, A.P. et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 22, 1790–1797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gottlieb, D.J. et al. Heritability of longitudinal change in lung function. The Framingham study. Am. J. Respir. Crit. Care Med. 164, 1655–1659 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Park, J.H. et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 42, 570–575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Eichler, E.E. et al. Missing heritability and strategies for finding the underlying causes of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hancock, D.B. et al. Genome-wide joint meta-analysis of SNP and SNP-by-smoking interaction identifies novel loci for pulmonary function. PLoS Genet. 8, e1003098 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sountoulidis, A. et al. Activation of the canonical Bone Morphogenetic Protein (BMP) pathway during lung morphogenesis and adult lung tissue repair. PLoS ONE 7, e41460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rosendahl, A. et al. Activation of bone morphogenetic protein/Smad signaling in bronchial epithelial cells during airway inflammation. Am. J. Respir. Cell Mol. Biol. 27, 160–169 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. McLaughlin, P.J. et al. Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice. Mol. Cell. Biol. 26, 1700–1709 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. de Boer, W.I. et al. Transforming growth factor β1 and recruitment of macrophages and mast cells in airways in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 158, 1951–1957 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Takizawa, H. et al. Increased expression of transforming growth factor-β1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD). Am. J. Respir. Crit. Care Med. 163, 1476–1483 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Kimura, M. et al. Bmi1 regulates cell fate via tumor suppressor WWOX repression in small-cell lung cancer cells. Cancer Sci. 102, 983–990 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Uhlen, M. et al. Towards a knowledge-based Human Protein Atlas. Nat. Biotechnol. 28, 1248–1250 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Weiss, S.T. Lung function and airway diseases. Nat. Genet. 42, 14–16 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Elks, C.E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nat. Genet. 42, 1077–1085 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lindgren, C.M. et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet. 5, e1000508 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li, Y., Willer, C.J., Ding, J., Scheet, P. & Abecasis, G.R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Browning, B.L. & Browning, S.R. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 84, 210–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Browning, S.R. & Browning, B.L. High-resolution detection of identity by descent in unrelated individuals. Am. J. Hum. Genet. 86, 526–539 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Servin, B. & Stephens, M. Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet. 3, e114 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. R Development Core Team. R: A Language and Environement for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2009).

  54. Lettre, G. et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet. 7, e1001300 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cheverud, J.M. A simple correction for multiple comparisons in interval mapping genome scans. Heredity (Edinb.) 87, 52–58 (2001).

    Article  CAS  Google Scholar 

  56. Hofman, A. et al. The Rotterdam Study: 2012 objectives and design update. Eur. J. Epidemiol. 26, 657–686 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hodge, E. et al. HTR4 gene structure and altered expression in the developing lung. Respir. Res. 14, 77 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Melén, E. et al. Expression analysis of asthma candidate genes during human and murine lung development. Respir. Res. 12, 86 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kho, A.T. et al. Transcriptomic analysis of human lung development. Am. J. Respir. Crit. Care Med. 181, 54–63 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

For all studies, information on funding and acknowledgments can be found in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

Project conception, design and management. Stage 1 GWAS. Ages: G.E., M.G., V.G., T.B.H., L.J.L. ARIC: S.J.L., N.F., D.C., D.B.H., B.R.J., A.C.M., K.E.N. B58C T1DGC: D.P.S. B58C WTCCC: D.P.S. CARDIA: A.S., L.J.S. CHS: S.A.G., S.R.H., B.M.P. CROATIA-Korcula: O.P., A.F.W. CROATIA-Vis: I.R. ECRHS: D.J., E.O., I.P., M. Wjst EPIC: R.A.S., N.J.W., J.H.Z. FHS: J.B.W., G.T.O., J.D. FTC: J.K., K.H.P., T.R., A. Viljanen Health ABC: P.A.C., T.B.H., S.B.K., Y.L. Health 2000: M.H., M.K. HCS: J.R.A., R.J.S. KORA S3: C.G., J. Heinrich MESA-Lung: R.G.B. NFBC1966: M.-R.J., A.P. NSPHS: U.G. ORCADES: H.C., J.F.W., S.H.W. RS I, II and III: A.H., B.H. Stricker, G.G.B. SHIP: S.G., B.K., H.V. Twins UK-I: C.J.H., T.D.S. Stage 2 follow-up studies. BHS 1 and 2: A.L.J., A.B.M., J.B. CROATIA-Split: N.D.H., C.H. Generation Scotland: D.J.P., B.H. Smith. KORA F4: H.S. LBC1936: I.J.D., J.M.S. LifeLines: H.M.B., D.S.P., J.M.V., C.W. LLFS: A.N., B.T., M. Wojczynski, R.L.M. PIVUS: E.I., L. Lind Twins UK-II and III: C.J.H., T.D.S. Multi-ancestry follow-up studies. CARe: R.G.B., K.M.B., D.J.L., R.K., L.J.S., J.B.W., N.H., M.F.P., K.M.B., S. Redline, E.G.B., G.T.O., L.R.L., W.B.W. KARE3 and Healthy Twin Study: J.S., W.J.K., Y.-M.O. Gene expression analyses. RT-PCR: K.R.B., G.G.B. eQTL analysis: J.B.J.v.M., A.G.U. Fetal lung expression analysis: I.P.H., I. Sayers, E.M.

Phenotype collection and data management. Stage 1 GWAS. Ages: T.A. ARIC: D.C., N.F., A.C.M., K.E.N. B58C T1DGC: A.R.R., D.P.S. B58C WTCCC: A.R.R., D.P.S. CARDIA: L.J.S., O.D.W. CHS: S.A.G., S.R.H., B.M.P., T.L. CROATIA-Korcula: O.P., L.Z. CROATIA-Vis: S.C., I.K. ECRHS: D.L.J., E.O., I.P., M. Wjst EPIC: J.H.Z. FHS: J.B.W., G.T.O., J.D. FTC: J.K., K.H.P., T.R., A. Viljanen Health ABC: P.A.C., W.T. Health 2000: M.H., M.K. HCS: J.R.A. KORA S3: J. Heinrich MESA-Lung: R.G.B. NFBC1966: M.-R.J., J.P., A.P. NSPHS: Å.J., S.E., U.G. ORCADES: S.H.W., J.F.W. RS I, II and III: G.G.B., L. Lahousse, D.W.L., B.H. Stricker SHIP: S.G., B.K., H.V. Twins UK-I: P.G.H., A. Viñuela. Stage 2 follow-up studies. BHS 1 and 2: A.L.J., A.B.M., J.B. CROATIA-Split: C.H., T.Z. Generation Scotland: D.J.P., B.H. Smith. KORA F4: R.H., S.K., H.S. LBC1936: I.J.D., J.M.S. LifeLines: D.S.P., J.M.V. LLFS: A.N., B.T., R.L.M. PIVUS: E.I., L. Lind Twins UK-II and III: P.G.H., A. Viñuela Multi-ancestry follow-up studies. CARe: R.G.B., T.D.P., K.M.B., D.J.L., R.K., L.J.S., J.B.W., N.H., M.F.P., K.M.B., S. Ripatti, E.G.B., G.T.O., L.R.L., W.B.W. KARE3 and Healthy Twin Study: J.S., W.J.K., Y.-M.O. Gene expression analyses. RT-PCR: K.R.B., G.G.B., F.M.V., P.S.H. eQTL analysis: J.B.J.v.M., M.J.P. Fetal lung expression analysis: I.P.H., I. Sayers, E.M.

Genotyping. Stage 1 GWAS. B58C T1DGC: W.L.M. B58C WTCCC: W.L.M. CARDIA: M.F., X.G. CHS: J.I.R., B.M.P. CROATIA-Korcula: J.E.H. CROATIA-Vis: S.C. ECRHS: M. Wjst EPIC: J.H.Z. FTC: J.K. Health ABC: Y.L., K.L. Health 2000: S. Ripatti, I. Surakka. HCS: R.J.S. KORA S3: H.G. MESA-Lung: S.S.R. NFBC1966: M.-R.J. NSPHS: Å.J., S.E., U.G. Orcades: H.C., J.F.W. RS I, II and III: F.R., A.G.U. SHIP: S.G., B.K., A.T., H.V. Twins UK-I: C.J.H., T.D.S. Stage 2 follow-up studies. BHS 1 and 2: J. Hui, J.B. CROATIA-Split: C.H., P.N., T.Z. Generation Scotland: D.J.P., B.H. Smith, H.T. LBC1936: G.D. LifeLines: C.W. LLFS: A.N., B.T. PIVUS: E.I., A.P.M. Twins UK-II and III: C.J.H., T.D.S.

Data analysis. Stage 1 GWAS. Ages: A.V.S. ARIC: N.F., D.B.H. B58C T1DGC: A.R.R., D.P.S. B58C WTCCC: A.R.R., D.P.S. CARDIA: X.G. CHS: S.A.G., G.L., S.R.H., T.L. CROATIA-Korcula: J.E.H. CROATIA-Vis: V.V. ECRHS: D.L.J., A.R. EPIC: J.H.Z. FHS: J.B.W., J.D., W.G. Health ABC: P.A.C., Y.L., K.L., W.T. Health 2000: M.K., S. Ripatti, I. Surakka. HCS: C.O., E.G.H. KORA S3: E.A. MESA-Lung: A.M., S.S.R. NFBC1966: A.C.A. NSPHS: S.E. ORCADES: P.K.J. RS I, II and III: L. Lahousse, D.W.L. SHIP: A.T. Twins UK-I: P.G.H. Stage 2 follow-up studies. KORA F4: C.F., R.H. LBC1936: L.M.L. LifeLines: K.d.J., H.M.B. LLFS: M. Wojczynski, B.T. PIVUS: T.F. Twins UK-II and III: P.G.H. Multi-ancestry follow-up studies. N.C.G. CARe: T.D.P., Q.D., L.A.L., X.-Q.W. KARE3 and Healthy Twin Study: M.K.L. Gene expression analyses. RT-PCR: K.R.B., F.M.V. eQTL analysis: M.J.P. Fetal lung expression analysis: I.P.H., I. Sayers, E.M.

Analysis group: CHARGE Consortium: D.W.L., S.A.G., S.J.L., J.D., N.F., A.V.S. CARe: T.D.P., Q.D. SpiroMeta Consortium: M.S.A., L.V.W., B.K., I.P.H., M.D.T.

Writing group: CHARGE Consortium: S.J.L., D.W.L., S.A.G., N.F., J.D., G.G.B., A.S. SpiroMeta Consortium: I.P.H., M.S.A., M.D.T., L.V.W., C.H.

Corresponding authors

Correspondence to Martin D Tobin or Stephanie J London.

Ethics declarations

Competing interests

J.B.W. is employed by Pfizer, Inc. None of the other authors have declared a possible conflict of interest.

Integrated supplementary information

Supplementary Figure 1 Quantile-quantile (QQ) plot of observed genome-wide association results against expected association results for FVC.

The quantile-quantile (QQ) plot shows –log10 (P) of observed genome-wide association results against expected association results for FVC. λGC before applying genomic control was 1.12. The QQ plot for all SNPs is shown in black. The results in red show the –log10 (P) of observed genome-wide association results for FVC after excluding SNPs within the 26 previously reported regions for FEV1 and FEV1/FVC; SNPs within 500 kb of the lead reported SNP in the SpiroMeta-CHARGE meta-analysis of FEV1 and FEV1/FVC were excluded.

Supplementary Figure 2 Regional plots.

Regional association plots of seven FVC- associated loci with P value < 5 × 10–7. The statistical significance of each SNP is shown on the –log10 (P) scale as a function of chromosome position (NCBI Build 36) in the meta-analysis of stage 1. The sentinel SNP at each locus is shown with a purple diamond with the correlations (r2) of surrounding SNPs to the sentinel indicated by color (red, r2 > 0.8; orange, r2 > 0.6; green, r2 > 0.4; light blue, r2 > 0.2; purple, unknown r2). The fine-scale recombination rate is shown in blue.

Supplementary Figure 3 Forest plots for the cohort-specific effects in stage 1.

Forest plots for the seven loci associated with FVC for stage 1. Six of the SNPs included in the figure showed a genome-wide significant association (P < 5 × 10–8) with FVC after combining both stages. The contributing effect (β, in ml) from each study is shown by a square, with confidence intervals indicated by horizontal lines. The contributing weight of each study to the meta-analysis is indicated by the size of the square, where the size per study is relative to the total contribution of the stage. The combined meta-analysis per stage is shown at the bottom of each graph.

Supplementary Figure 4 Forest plots for the cohort-specific effects in stage 2.

Forest plots for the seven loci associated with FVC for stage 2. Six of the SNPs included in the figure showed a genome-wide significant association (P < 5 × 10–8) with FVC after combining both stages. The contributing effect (β, in ml) from each study is shown by a square, with confidence intervals indicated by horizontal lines. The contributing weight of each study to the meta-analysis is indicated by the size of the square, where the size per study is relative to the total contribution of the stage. The combined meta-analysis per stage is shown at the bottom of each graph.

Supplementary Figure 5 Regional plots for loci in African Americans.

Regional plot of –log10(P value) of EFEMP1 in African American samples. The LD is based on CEU 1000G reference panel. A. rs62164511 is the most significant SNP in this locus in African American data. B. rs1430193 is the index SNP identified in European ancestry individuals. Note the low linkage disequilibrium (r2 = 0.16) between these SNPs and the evidence for allelic heterogeneity at the locus.

Supplementary Figure 6 Expression analysis of candidate genes in lung tissue and primary cells.

(a) RT-PCR profiling of gene transcripts demonstrates expression of all seven candidate genes in total lung tissue: EFEMP1 (86 bp), BMP6 (108 bp), WWOX (89 bp), TMEM163 (90 bp), KCNJ2 (160 bp), PRDM11 (77 bp) and HSD17B12 (65 bp). (b) mRNA expression profiling in human primary cells: human bronchial epithelial cells (HBECs), human airway smooth muscle (HASM) cells and peripheral blood mononuclear cells (PBMCs).

Supplementary Figure 7 Real-time RT-PCR of candidate genes in lung tissue and primary cells.

TaqMan amplification curves of EFEMP1 (a), BMP6 (b), WWOX (c), KCNJ2 (d), HSD17B12 (e), PRDM11 (f) and GAPDH (g) on total lung tissue, human bronchial epithelial cells (HBECs), human airway smooth muscle (HASM) cells and peripheral blood mononuclear cells (PMBCs). (NTC, non-template control.)

Supplementary Figure 8 eQTL association.

This graph shows the cis effects for the sentinel SNP rs4237643 on probe 3420341–HSD17B12, the only significant eQTL association we were able to identify in whole blood. eQTL analysis was performed using Illumina Whole-Genome Expression BeadChips (HumanHT-12 v4). The blue and red dots show the sex of the individual (blue, male; red, female). The black diagonal line crosses the mean gene expression level per genotype group (μ). The vertical line at the right gives the average z score and its P value.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Tables 1–12 and Supplementary Note (PDF 4342 kb)

Supplementary Data Set 1

SNPs, chromosome numbers, HapMap allele frequency for the reference allele and P value for the association with forced vital capacity in stage 1. (ZIP 50782 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loth, D., Artigas, M., Gharib, S. et al. Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat Genet 46, 669–677 (2014). https://doi.org/10.1038/ng.3011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3011

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing