Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility

Abstract

Here we use intravital imaging to demonstrate a reversible transition to a motile state as breast cancer cells spread. Imaging primary tumours revealed heterogeneity in cell morphology and motility. Two distinct modes of motility were observed: collective and single-celled. By monitoring the localization of Smad2 and the activity of a TGFβ-dependent reporter gene during breast cancer cell dissemination, we demonstrate that TGFβ signalling is transiently and locally activated in motile single cells. TGFβ1 switches cells from cohesive to single cell motility through a transcriptional program involving Smad4, EGFR, Nedd9, M-RIP, FARP and RhoC. Blockade of TGFβ signalling prevented cells moving singly in vivo but did not inhibit cells moving collectively. Cells restricted to collective invasion were capable of lymphatic invasion but not blood-borne metastasis. Constitutive TGFβ signalling promoted single cell motility and intravasation but reduced subsequent growth in the lungs. Thus, transient TGFβ signalling is essential for blood-borne metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient acquisition of motile behaviour by breast cancer cells.
Figure 2: TGFβ signalling in MTLn3E cells.
Figure 3: Nuclear accumulation of Smad2 in singly-moving cells.
Figure 4: Activation of Smad-dependent transcription in singly moving cells.
Figure 5: TGFβ requires Smad4 to switch cells to single cell motility.
Figure 6: Roles of multiple TGFβ target genes in the switch to single cell motility.
Figure 7: TGFβ signalling is required for single cell motility in vivo.
Figure 8: TGFβ signalling is required for haematogenous but not lymphatic metastasis.

Similar content being viewed by others

References

  1. Chambers, A. F., Groom, A. C. & MacDonald, I. C. Dissemination and growth of cancer cells in metastatic sites. Nature Rev. Cancer 2, 563–572 (2002).

    Article  CAS  Google Scholar 

  2. Sahai, E. Illuminating the metastatic process. Nature Rev. Cancer 7, 737–749 (2007).

    Article  CAS  Google Scholar 

  3. Friedl, P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004).

    Article  CAS  Google Scholar 

  4. Leivonen, S. K. & Kahari, V. M. Transforming growth factor-β signaling in cancer invasion and metastasis. Int. J. Cancer 121, 2119–2124 (2007).

    Article  CAS  Google Scholar 

  5. Lesko, E. & Majka, M. The biological role of HGF-MET axis in tumor growth and development of metastasis. Front. Biosci. 13, 1271–1280 (2008).

    Article  CAS  Google Scholar 

  6. Wells, A. Tumor invasion: role of growth factor-induced cell motility. Adv. Cancer Res 78, 31–101 (2000).

    Article  CAS  Google Scholar 

  7. Levy, L. & Hill, C. S. Alterations in components of the TGF-β superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17, 41–58 (2006).

    Article  CAS  Google Scholar 

  8. Nicholson, R. I., Gee, J. M. & Harper, M. E. EGFR and cancer prognosis. Eur. J. Cancer 37 Suppl 4, S9–S15 (2001).

    Article  CAS  Google Scholar 

  9. Fox, S. B. & Harris, A. L. The epidermal growth factor receptor in breast cancer. J. Mammary Gland Biol. Neoplasia 2, 131–141 (1997).

    Article  CAS  Google Scholar 

  10. Siegel, P. M. & Massague, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Naturet Rev. Cancer 3, 807–821 (2003).

    Article  CAS  Google Scholar 

  11. Donovan, J. & Slingerland, J. Transforming growth factor-β and breast cancer: Cell cycle arrest by transforming growth factor-beta and its disruption in cancer. Breast Cancer Res. 2, 116–124 (2000).

    Article  CAS  Google Scholar 

  12. Wakefield, L. M. & Roberts, A. B. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr. Opin. Genet. Dev. 12, 22–29 (2002).

    Article  CAS  Google Scholar 

  13. Jakowlew, S. B. Transforming growth factor-β in cancer and metastasis. Cancer Metastasis Rev. 25, 435–457 (2006).

    Article  CAS  Google Scholar 

  14. Zavadil, J. & Bottinger, E. P. TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24, 5764–5774 (2005).

    Article  CAS  Google Scholar 

  15. Vincent-Salomon, A. & Thiery, J. P. Host microenvironment in breast cancer development: epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 5, 101–106 (2003).

    Article  CAS  Google Scholar 

  16. Kokkinos, M. I. et al. Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 185, 191–203 (2007).

    Article  CAS  Google Scholar 

  17. Condeelis, J. & Segall, J. E. Intravital imaging of cell movement in tumours. Nature Rev. Cancer 3, 921–930 (2003).

    Article  CAS  Google Scholar 

  18. Wyckoff, J. B., Jones, J. G., Condeelis, J. S. & Segall, J. E. A critical step in metastasis: in vivo analysis of intravasation at the primary tumor. Cancer Res. 60, 2504–2511 (2000).

    CAS  PubMed  Google Scholar 

  19. ten Dijke, P. & Hill, C. S. New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29, 265–273 (2004).

    Article  CAS  Google Scholar 

  20. Wyckoff, J. B. et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 67, 2649–2656 (2007).

    Article  CAS  Google Scholar 

  21. Philippar, U. et al. A Mena invasion isoform potentiates EGF-induced carcinoma cell invasion and metastasis. Dev. Cell 15, 813–828 (2008).

    Article  CAS  Google Scholar 

  22. Sahai, E. et al. Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol. 5, 14 (2005).

    Article  Google Scholar 

  23. Xue, C. et al. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res. 66, 192–197 (2006).

    Article  CAS  Google Scholar 

  24. Dennler, S. et al. Direct binding of Smad3 and Smad4 to critical TGF β-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J. 17, 3091–3100 (1998).

    Article  CAS  Google Scholar 

  25. Schmierer, B. & Hill, C. S. Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor β-dependent nuclear accumulation of Smads. Mol. Cell Biol. 25, 9845–9858 (2005).

    Article  CAS  Google Scholar 

  26. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  27. Mi, Z. et al. Differential osteopontin expression in phenotypically distinct subclones of murine breast cancer cells mediates metastatic behavior. J. Biol. Chem. 279, 46659–46667 (2004).

    Article  CAS  Google Scholar 

  28. Wyckoff, J. B., Pinner, S. E., Gschmeissner, S., Condeelis, J. S. & Sahai, E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 16, 1515–1523 (2006).

    Article  CAS  Google Scholar 

  29. Padua, D. et al. TGFβ primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell 133, 66–77 (2008).

    Article  CAS  Google Scholar 

  30. Welch, D. R., Fabra, A. & Nakajima, M. Transforming growth factor β stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc. Natl Acad. Sci. USA 87, 7678–7682 (1990).

    Article  CAS  Google Scholar 

  31. Goswami, S. et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 65, 5278–5283 (2005).

    Article  CAS  Google Scholar 

  32. Gupta, G. P. et al. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446, 765–770 (2007).

    Article  CAS  Google Scholar 

  33. Kang, Y. et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc. Natl Acad. Sci. USA 102, 13909–13914 (2005).

    Article  CAS  Google Scholar 

  34. Nicolas, F. J., De Bosscher, K., Schmierer, B. & Hill, C. S. Analysis of Smad nucleocytoplasmic shuttling in living cells. J. Cell Sci. 117, 4113–4125 (2004).

    Article  CAS  Google Scholar 

  35. Gilles, C. et al. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer Res. 63, 2658–2664 (2003).

    CAS  PubMed  Google Scholar 

  36. Wong, C. et al. Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor β. Mol. Cell Biol. 19, 1821–1830 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank lab colleagues for advice and comments on this project. We thank members of the LRI FACS laboratory, Clare Watkins and members of the LRI Biological Resources Unit, the Paterson Institute for Cancer Research microarray facility, the LRI Bioinformatics team, Mike Howell of the LRI Developmental Signalling laboratory and Debbie Aubyn of the LRI microscopy laboratory for technical assistance. This work was funded by the Breast Cancer Campaign project grant 12May05 and CRUK.

Author information

Authors and Affiliations

Authors

Contributions

S.G. generated most of the data in Figs 2, 3, 4, 5 and 7 with some assistance from E.S. S.G. and E.S. made equal contributions to Fig. 8 with assistance from C.S.M.; E.S. generated most of the data in Figs 1 and 6 with assistance from S.G. and S.H.; L.J.J. provided clinical material used in Supplementary Information figures; S.G. generated data shown in Supplementary Information Figs 3, 4, 5, 6, 7, 8; S.H. and C.S.M. assisted with Supplementary Information Figs 7 and 8, respectively; E.S. generated data in Supplementary Information Figs 1, 2, 6 and 9; C.S.H. provided reagents, expertise and intellectual input. S.G. and E.S. designed the experiments.

Corresponding author

Correspondence to Erik Sahai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2708 kb)

Supplementary Information

Supplementary Movie 1 (AVI 3506 kb)

Supplementary Information

Supplementary Movie 2 (AVI 620 kb)

Supplementary Information

Supplementary Movie 3 (AVI 1030 kb)

Supplementary Information

Supplementary Movie 4 (AVI 1378 kb)

Supplementary Information

Supplementary Movie 5 (AVI 1928 kb)

Supplementary Information

Supplementary Movie 6 (AVI 470 kb)

Supplementary Information

Supplementary Movie 7 (AVI 680 kb)

Supplementary Information

Supplementary Movie 8 (AVI 2097 kb)

Supplementary Information

Supplementary Movie 9 (AVI 2054 kb)

Supplementary Information

Supplementary Movie 10 (AVI 691 kb)

Supplementary Information

Supplementary Movie 11 (AVI 601 kb)

Supplementary Information

Supplementary Movie 12 (AVI 2810 kb)

Supplementary Information

Supplementary Movie 13 (AVI 2741 kb)

Supplementary Information

Supplementary Movie 14 (AVI 3051 kb)

Supplementary Information

Supplementary Movie 15 (AVI 2074 kb)

Supplementary Information

Supplementary Movie 16 (AVI 1238 kb)

Supplementary Information

Supplementary Movie 17 (AVI 1165 kb)

Supplementary Information

Supplementary Movie 18 (AVI 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giampieri, S., Manning, C., Hooper, S. et al. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 11, 1287–1296 (2009). https://doi.org/10.1038/ncb1973

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1973

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing