Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc

Abstract

TRANSCRIPTION factors of the NFAT family regulate the production of effector proteins that coordinate the immune response1. The immunosuppressive drugs FK506 and cyclosporin A (CsA) act by blocking a Ca2+-mediated signalling pathway leading to NFAT. Although FK506 and CsA have enabled human organs to be transplanted routinely, the toxic side-effects of these drugs limit their usage. This toxicity might be absent in antagonists that target NFAT directly. As a first step in the structure-based search for NFAT antagonists, we now report the identification and solution structure of a 20K domain of NFATc (NFATc-DBD) that is both necessary and sufficient to bind DNA and activate transcription cooperatively. Although the overall fold of the NFATc DNA-binding domain is related to that of NF-κB p50 (refs 2, 3), the two proteins use significantly different strategies for DNA recognition. On the basis of these results, we present a model for the cooperative complex formed between NFAT and the mitogenic transcription factor AP-1 on the interleukin-2 enhancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Crabtree, G. R. & Clipstone, N. A. Annu. Rev. Biochem. 63, 1045–1083 (1994).

    Article  CAS  Google Scholar 

  2. Müller, C. W., Rey, F. A., Sodeoka, M., Verdine, G. L. & Harrison, S. C. Nature 373, 301–317 (1995).

    Article  ADS  Google Scholar 

  3. Ghosh, G., Van Duyne, G. D., Ghosh, S. & Sigler, P. B. Nature 373, 303–310 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Durand, D. B. et al. Mol. Cell. Biol. 8, 1715–1724 (1988).

    Article  CAS  Google Scholar 

  5. Wolfe, S. A. thesis (Harvard Univ., 1996).

  6. Jain, J., Burgeon, E., Badalian, T. M., Hogan, P. G. & Rao, A. J. Biol. Chem. 270, 4138–4145 (1995).

    Article  CAS  Google Scholar 

  7. Peng, J. W. & Wagner, G. J. Mag. Res. 98, 308–332 (1992).

    ADS  CAS  Google Scholar 

  8. Ho, S. N. et al. J. Biol. Chem. 270, 19898–19907 (1995).

    Article  CAS  Google Scholar 

  9. McCaffrey, P. G. et al. Science 262, 750–754 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Northrop, J. P. et al. Nature 369, 497–502 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Liu, J., Sodeoka, M., Lane, W. S. & Verdine, G. L. Proc. Natl Acad. Sci. USA 91, 908–912 (1994).

    Article  ADS  CAS  Google Scholar 

  12. Chen, L. thesis (Harvard Univ., 1994).

  13. Mascareñas, J. L., Hayashibara, K. C. & Verdine, G. L. J. Am. Chem. Soc. 115, 373–374 (1993).

    Article  Google Scholar 

  14. Min, C. H., Cushing, T. D. & Verdine, G. L. J. Am. Chem. Soc. 118, 6116–6120 (1996).

    Article  CAS  Google Scholar 

  15. Starr, D. B. & Hawley, D. K. Cell 67, 1231–1240 (1991).

    Article  CAS  Google Scholar 

  16. Pabo, C. 0. & Sauer, R. T. Annu. Rev. Biochem. 61, 1053–1095 (1992).

    Article  CAS  Google Scholar 

  17. Blackwell, T. K., Bowerman, B., Priess, J. R. & Weintraub, H. Science 266, 621–628 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Feng, J., Johnso, R. C. & Dickerson, R. E. Science 263, 348–355 (1994).

    Article  ADS  CAS  Google Scholar 

  19. Peterson, B. R., Sun, L. J. & Verdine, G. L. Proc. Natl Acad. Sci. USA 93, 13671–13676 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Nikolov, D. B. et al. Nature 377, 119–128 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Tan, S., Hunziker, Y., Sargent, D. F. & Richmond, T. J. Nature 381, 127–134 (1996).

    Article  ADS  CAS  Google Scholar 

  22. Shortle, D. J. Mag. Res. B 105, 88–90 (1994).

    Article  CAS  Google Scholar 

  23. NMR of Proteins (eds Clore, G. M. & Gronenborn, A. M.) (CRC Press, Ann Arbor, 1993).

  24. Güntert, P., Braun, W. & Wüthrich, K. J. Mol. Biol. 217, 517–530 (1991).

    Article  Google Scholar 

  25. Hoey, T., Sun, Y.-L., Williamson, K. & Xu, X. Immunity 2, 461–472 (1995).

    Article  CAS  Google Scholar 

  26. Masuda, E. S. et al. Mol. Cell. Biol. 15, 2697–2706 (1995).

    Article  CAS  Google Scholar 

  27. Ghosh, S. et al. Cell 62, 1019–1029 (1990).

    Article  CAS  Google Scholar 

  28. Kieran, M. et al. Cell 62, 1007–1018 (1990).

    Article  CAS  Google Scholar 

  29. Glover, J. N. M. & Harrison, S. C. Nature 373, 257–261 (1994).

    Article  ADS  Google Scholar 

  30. Chen, L. et al. Curr. Biol. 5, 882–889 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfe, S., Zhou, P., Dötsch, V. et al. Unusual Rel-like architecture in the DNA-binding domain of the transcription factor NFATc. Nature 385, 172–176 (1997). https://doi.org/10.1038/385172a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/385172a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing