Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Depletion of intracellular calcium stores activates a calcium current in mast cells

Abstract

IN many cell types, receptor-mediated Ca2+ release from internal stores is followed by Ca2+ influx across the plasma membrane1–3. The sustained entry of Ca2+ is thought to result partly from the depletion of intracellular Ca2+ pools4,5. Most investigations have characterized Ca2+ influx indirectly by measuring Ca2+-activated currents6–9 or using Fura-2 quenching by Mn2, which in some cells enters the cells by the same influx pathway10,11. But only a few studies have investigated this Ca2+ entry pathway more directly12–14. We have combined patch-clamp and Fura-2 measurements to monitor membrane currents in mast cells under conditions where intracellular Ca2+ stores were emptied by either inositol 1,4,5-trisphosphate, ionomycin, or excess of the Ca2+ chelator EGTA. The depletion of Ca2+ pools by these independent mechanisms commonly induced activation of a sustained calcium inward current that was highly selective for Ca2+ ions over Ba2+, Sr2+ and Mn2+. This Ca2+ current, which we termICRAC (calcium release-activated calcium), is not voltage-activated and shows a characteristic inward rectification. It may be the mechanism by which electrically nonexcitable cells maintain raised intracellular Ca2+ concentrations and replenish their empty Ca2+ stores after receptor stimulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Berridge, M. J. & Irvine, R. F. Nature 341, 197–205 (1989).

    Article  ADS  CAS  Google Scholar 

  2. Irvine, R. F. FEBS Lett. 263, 5–9 (1990).

    Article  CAS  Google Scholar 

  3. Meldolesi, J., Clementi, E., Fasolato, C., Zacchetti, D. & Pozzan, T. Trends pharmacol. Sci. 12, 289–292 (1991).

    Article  CAS  Google Scholar 

  4. Casteels, R. & Droogmans, G. J. Physiol., Lond. 317, 263–279 (1981).

    Article  CAS  Google Scholar 

  5. Putney, J. W. Jr Cell. Calcium 11, 611–624 (1990).

    Article  CAS  Google Scholar 

  6. Bird, G. St J. et al. Nature 352, 162–165 (1991).

    Article  ADS  CAS  Google Scholar 

  7. Morris, A. P., Gallacher, D. V., Irvine, R. F. & Petersen, O. H. Nature 330, 653–655 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Liano, I., Marty, A. & Tanguy, J. Pflügers Arch. 409, 499–506 (1987).

    Article  Google Scholar 

  9. Snyder, P. M., Krause, K.-H. & Welsh, M. J. J. biol. Chem. 263, 11048–11051 (1988).

    CAS  Google Scholar 

  10. Sage, S. O., Merritt, J. E., Hallam, T. J. & Rink, T. J. Biochem. J. 258, 923–926 (1989).

    Article  CAS  Google Scholar 

  11. Jacob, R. J. Physiol., Lond. 421, 55–77 (1990).

    Article  CAS  Google Scholar 

  12. Penner, R., Matthews, G. & Neher, E. Nature 334, 499–504 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Matthews, G., Neher, E. & Penner, R. J. Physiol., Lond. 418, 105–130 (1989).

    Article  CAS  Google Scholar 

  14. Lewis, R. S. & Cahalan, M. D. Cell Regulation 1, 99–112 (1989).

    Article  CAS  Google Scholar 

  15. Marty, A. & Tan, Y. P. J. Physiol., Lond. 419, 665–687 (1989).

    Article  CAS  Google Scholar 

  16. Matthews, G., Neher, E. & Penner, R. J. Physiol., Lond. 418, 131–144 (1989).

    Article  CAS  Google Scholar 

  17. Eckert, R. & Chad, J. E. Prog. Biophys. molec. Biol. 44, 215–267 (1984).

    Article  CAS  Google Scholar 

  18. Cullen, P. J., Comerford, J. G. & Dawson, A. P. FEBS Lett. 228, 57–59 (1988).

    Article  CAS  Google Scholar 

  19. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Proc. natn. Acad. Sci. USA 87, 2466–2470 (1990).

    Article  ADS  CAS  Google Scholar 

  20. Albert, P. R. & Tashjian, A. H. Jr J. biol. Chem. 259, 15350–15363 (1984).

    CAS  PubMed  Google Scholar 

  21. Liu, C. & Hermann, T. E. J. biol. Chem. 253, 5892–5894 (1978).

    CAS  Google Scholar 

  22. Merritt, J. E., Jacob, R. & Hallam, T. J. J. biol. Chem. 253, 1522–1527 (1989).

    Google Scholar 

  23. Mertz, L. M., Baum, B. J. & Ambudkar, I. S. J. biol. Chem. 265, 15010–15014 (1990).

    CAS  PubMed  Google Scholar 

  24. Kass, G. E. N., Llopis, J., Chow, S. C., Duddy, S. K. & Orrenius, S. J. biol. Chem. 265, 17486–17492 (1990).

    CAS  PubMed  Google Scholar 

  25. Llopis, J., Chow, S. B., Kass, G. E. N., Gahm, A. & Orrenius, S. Biochem. J. 277, 553–556 (1991).

    Article  CAS  Google Scholar 

  26. von zur Mühlen, F., Eckstein, F. & Penner, R. Proc. natn. Acad. Sci. U.S.A. 88, 926–930 (1991).

    Article  ADS  Google Scholar 

  27. Neher, E. in Neuromuscular Junction (eds Sellin, L. C., Libelius, R. & Thesleff, S.) 65–76 (Elsevier, Amsterdam, 1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoth, M., Penner, R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355, 353–356 (1992). https://doi.org/10.1038/355353a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355353a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing