Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reactions between nitric oxide and haemoglobin under physiological conditions

Abstract

The tenet of high-affinity nitric oxide (NO) binding to a haemoglobin (Hb) has shaped our view of haem proteins and of small diffusible signaling molecules. Specifically, NO binds rapidly to haem iron in Hb (k ≈ 107 M−1 s−1) (refs 1, 2) and once bound, the NO activity is largely irretrievable (Kd ≈ 10−5 s−1) (310); the binding is purportedly so tight as to be unaffected by O2 or CO. However, these general principles do not consider the allosteric state of Hb or the nature of the allosteric effector, and they mostly derive from the functional behaviour of fully nitrosylated Hb, whereas Hb is only partially nitrosylated in vivo11,12,13,14,15,16. Here we show that oxygen drives the conversion of nitrosylhaemoglobin in the ‘tense’ T (or partially nitrosylated, deoxy) structure to S -nitrosohaemoglobin in the ‘relaxed’ R (or ligand-bound, oxy) structure. In the absence of oxygen, nitroxyl anion (NO) is liberated in a reaction producing methaemoglobin. The yields of both S -nitrosohaemoglobin and methaemoglobin are dependent on the NO/Hb ratio. These newly discovered reactions elucidate mechanisms underlying NO function in the respiratory cycle, and provide insight into the aetiology of S -nitrosothiols, methaemoglobin and its related valency hybrids. Mechanistic re-examination of NO interactions with other haem proteins containing allosteric-site thiols may be warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxygen titration of partially nitrosylated haemoglobin.
Figure 2: Auto S -nitrosylation of haemoglobin upon oxygenation: NO group transfer from haem iron to cysteine as a function of initial NO/Hb.
Figure 3: Titration of deoxyhaemoglobin with nitric oxide: redox reactions of NO bound to the haem iron.
Figure 4: Oxygen-driven decomposition of nitrosyl haemoglobin is dependent on β-chain cysteine 93.

Similar content being viewed by others

References

  1. Gibson, Q. H. & Rougton, F. J. W. The kinetics and equilibria of the reactions of nitric oxide with sheep haemoglobin. J. Physiol. 136, 507–526 (1957).

    Article  CAS  Google Scholar 

  2. Cassoly, R. & Gibson, Q. H. Conformation, co-operativity and ligand binding in human hemoglobin. J. Mol. Biol. 91, 301–313 (1975).

    Article  CAS  Google Scholar 

  3. Sharma, V. S. & Ranney, H. M. The dissociation of NO from nitrosylhemoglobin. J. Biol. Chem. 253, 6467–6472 (1978).

    CAS  PubMed  Google Scholar 

  4. Moore, E. G. & Gibson, Q. H. Cooperativity in the dissociation of nitric oxide from hemoglobin. J. Biol. Chem. 251, 2788–2794 (1976).

    CAS  PubMed  Google Scholar 

  5. Kharitonov, V. G., Bonaventura, J. & Sharma, V. S. in Methods in Nitric Oxide Research (eds Feelisch, M. & Stamler, J. S.) 39–47 (Wiley, London, (1996)).

    Google Scholar 

  6. Traylor, T. G. & Sharma, V. S. Why NO? Biochemistry 31, 2847–2849 (1992).

    Article  CAS  Google Scholar 

  7. Lancaster, J. R. Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc. Natl Acad. Sci. USA 91, 8137–8141 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Motterlini, R., Vandegriff, K. D. & Winslow, R. M. Hemoglobin–nitric oxide interaction and its implications. Transfus. Med. Rev. X, 77–84 (1996).

    Article  Google Scholar 

  9. Marletta, M. A., Tayeh, M. A. & Hevel, J. M. Unraveling the biological significance of nitric oxide. Biofactors 2, 219–225 (1990).

    CAS  PubMed  Google Scholar 

  10. Antonini, E. & Brunori, M. in Hemoglobin and Myoglobin in their Reactions with Ligands 32, 272–276 (Elsevier, New York, (1971)).

    Google Scholar 

  11. Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J. S. S -nitrosohemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Stamler, J. S. et al. Blood flow regulation by S -nitrosohemoglobin is controlled by the physiological oxygen gradient. Science 276, 2034–2037 (1997).

    Article  CAS  Google Scholar 

  13. Westenberger, U. et al. Formation of free radicals and nitric oxide derivative of hemoglobin in rats during septic shock. Free Rad. Res. Commun. 11, 167–178 (1990).

    Article  CAS  Google Scholar 

  14. Hall, D. M., Buettner, G. R., Mathes, R. D. & Gisolfi, C. V. Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J. Appl. Physiol. 77, 548–553 (1994).

    Article  CAS  Google Scholar 

  15. Kruszyna, R., Kruszyna, H., Smith, R. P. & Wilcox, D. E. Generation of valency hybrids and nitrosylated species of hemoglobin in mice by nitric oxide vasodilators. Toxicol. Appl. Pharmacol. 94, 458–465 (1988).

    Article  CAS  Google Scholar 

  16. Kosaka, H. et al. ESR spectral transition by arteriovenous cycle in nitric oxide hemoglobin of cytokine-treated rats. Am. J. Physiol. 266, 1400–1405 (1994).

    Article  Google Scholar 

  17. Perutz, M. F. in Molecular Basis of Blood Diseases (ed. Stammatayanopoulos, G.) 127–178 (Saunders, Philadelphia, (1987)).

    Google Scholar 

  18. Taketa, F., Antholine, W. E. & Chen, J. Y. Chain nonequivalence in binding of nitric oxide to hemoglobin. J. Biol. Chem. 253, 5448–5451 (1978).

    CAS  PubMed  Google Scholar 

  19. Henry, Y. et al. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 7, 1124–1134 (1993).

    Article  CAS  Google Scholar 

  20. Addison, A. W. & Stephanos, J. J. Nitrosyliron (III) hemoglobin: autoreduction and spectroscopy. Biochemistry 25, 4104–4113 (1986).

    Article  CAS  Google Scholar 

  21. Stamler, J. S., Singel, D. J., Loscalzo, J. Biochemistry of nitric oxide and its redox activated forms. Science 258, 1898–1902 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Arnelle, D. & Stamler, J. S. NO+, NO·, and NO donation by S -nitrosothiols: Implications for regulation of physiological functions by S -nitrosylation and acceleration of disulfide formation. Archiv. Biochem. Biophys. 318, 279–285 (1995).

    Article  CAS  Google Scholar 

  23. Kruszyna, R., Kruszyna, H., Smith, R. P., Thron, R. D. & Wilcox, D. E. Nitrite conversion to nitric oxide in red cells and its stabilization as a nitrosylated valency hybrid of hemoglobin. J. Pharmacol. Exp. Ther. 241, 307–313 (1987).

    CAS  PubMed  Google Scholar 

  24. Kagan, V. E., Day, B. W., Elsayed, N. V. & Gorbunov, N. V. Dynamics of nitrosylated haemoglobin in blood. Nature 383, 30–31 (1996).

    Article  CAS  Google Scholar 

  25. Riggs, A. & Wolbach, R. A. Sulfhydryl groups and the structure of hemoglobin. J. Gen. Physiol. 39, 585–605 (1956).

    Article  CAS  Google Scholar 

  26. Riggs, A. F. The binding of N -ethylmaleimide by human hemoglobin and its effect upon the oxygen equilibrium. J. Biol. Chem. 236, 1948–1954 (1961).

    CAS  PubMed  Google Scholar 

  27. Gow, A., Buerk, D. D. & Ischiropolouus, H. Anovel reaction mechanism for the formation of S -nitrosothiol in vivo. J. Biol. Chem. 272, 2841–2845 (1997).

    Article  CAS  Google Scholar 

  28. Perutz, M. F. Blood: Taking the pressure off. Nature 380, 205–206 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Stamler, J. S., Toone, E. J., Lipton, S. A. & Sucher, N. J. (S)NO Signals: Translocation, regulation, and a consensus motif. Neuron 18, 691–696 (1997).

    Article  CAS  Google Scholar 

  30. Stamler, J. S. Redox signalling: Nitrosylation and related target interactions of nitric oxide. Cell 78, 931–936 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bonaventura, D. J. Singel, H. Ishiropolous and I. Fridovich for discussion and T. McMahon for help with measurements. J.S.S. is the recipient of grants from the NHLBI; A.J.G. is supported by a National Research Award from the NHLBI.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gow, A., Stamler, J. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173 (1998). https://doi.org/10.1038/34402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/34402

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing