Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of the human cysteinyl leukotriene CysLT1 receptor

Abstract

The cysteinyl leukotrienes—leukotriene C4(LTC4), leukotriene D4(LTD4) and leukotriene E4(LTE4)—are important mediators of human bronchial asthma1,2,3,. Pharmacological studies have determined that cysteinyl leukotrienes activate at least two receptors, designated CysLT1 and CysLT2 (refs 4,5,6). The CysLT1-selective antagonists, such as montelukast (Singulair)7,8,9,10, zafirlukast (Accolate)11 and pranlukast (Onon)12, are important in the treatment of asthma. Previous biochemical characterization of CysLT1 antagonists and the CysLT1 receptor has been in membrane preparations from tissues enriched for this receptor13. Here we report the molecular and pharmacological characterization of the cloned human CysLT1 receptor. We describe the functional activation (calcium mobilization) of this receptor by LTD4 and LTC4, and competition for radiolabelled LTD4 binding to this receptor by the cysteinyl leukotrienes and three structurally distinct classes of CysLT1-receptor antagonists. We detected CysLT1-receptor messenger RNA in spleen, peripheral blood leukocytes and lung. In normal human lung, expression of the CysLT1-receptor mRNA was confined to smooth muscle cells and tissue macrophages. Finally, we mapped the human CysLT1-receptor gene to the X chromosome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nucleotide and deduced amino-acid sequences of the HG55 (CysLT1) receptor.
Figure 2: Functional activation of HG55 (CysLT1) receptor in X.laevis cells.
Figure 3: Functional expression of HG55 (CysLT1) receptor in Cos-7 cells.
Figure 4: [3H]LTD4-specific binding to Cos-7 cell membranes expressing the HG55 (CysLT1) receptor.
Figure 5: Expression studies of the CysLT1 receptor.

Similar content being viewed by others

References

  1. Dahlen, S. E., Hedqvist, P., Hammarstrom, S. & Samuelsson, B. Leukotrienes are potent constrictors of human bronchi. Nature 288, 484–486 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Piper, P. J. Formation and actions of leukotrienes. Physiol. Rev. 64, 744–761 (1984).

    Article  CAS  Google Scholar 

  3. Lewis, R. A., Austen, K. F. & Soberman, R. J. Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323, 645–655 (1990).

    Article  CAS  Google Scholar 

  4. Coleman, R. A. et al. Prostanoid and leukotriene receptors. A progress report from the IUPHAR working parties on classification and nomenclature. Adv. Prostaglandins Thromboxane Leukotriene Res. 23, 283–285 (1995).

    CAS  Google Scholar 

  5. Charette, L. & Jones, T. J. Effects of L-serine borate on antagonism of leukotriene C4-induced contractions of guinea pig trachea. Br. J. Pharmacol. 91, 179–188 (1987).

    Article  CAS  Google Scholar 

  6. Labat, C. et al. Asecond cysteinyl leukotriene receptor in human lung. J. Pharmacol. Exp. Ther. 263, 800– 805 (1992).

    CAS  PubMed  Google Scholar 

  7. Jones, T. R. et al. Pharmacology of montelukast sodium (SINGULAIRTM), a potent and selective leukotriene D4receptor antagonist. Can. J. Physiol. Pharmacol. 73, 191– 201 (1995).

    Article  ADS  CAS  Google Scholar 

  8. Reiss, T. F. et al. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma: a multicenter, randomized, double-blind trial. Montelukast Clinical Research Study Group. Arch. Intern. Med. 158, 1213–1220 ( 1998).

    Article  CAS  Google Scholar 

  9. Knorr, B. et al. Montelukast for chronic asthma in 6- to 14-year-old children: a randomized, double-blind trial. Pediatric Montelukast Study Group. J. Am. Med. Assoc. 279, 1181–1186 (1998).

    Article  CAS  Google Scholar 

  10. Leff, J. A. et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N. Engl. J. Med. 339, 147–152 ( 1998).

    Article  CAS  Google Scholar 

  11. Suissa, S. et al. Effectiveness of the leukotriene receptor antagonist zafirlukast for mild–moderate asthma. Ann. Int. Med. 126, 177–183 (1997).

    Article  CAS  Google Scholar 

  12. Grossman, J. et al. Results of the first U.S. double-blind, placebo-controlled multicenter clinical study in asthma with pranlukast, a novel leukotriene receptor antagonist. J. Asthma 34, 321– 328 (1997).

    Article  CAS  Google Scholar 

  13. Metters, K. M. & Zamboni, R. J. Photoaffinity labeling of the leukotriene D4receptor in guinea pig lung. J. Biol. Chem. 268, 6487–6495 (1993).

    CAS  PubMed  Google Scholar 

  14. Yokomizo, T., Izumi, T., Change, K., Takuwa, Y. & Shimizu, T. AG-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624 (1997).

    Article  ADS  CAS  Google Scholar 

  15. Martin, V. et al. Leukotriene binding, signaling and analysis of HIV coreceptor function in mouse and human leukotriene B4 receptor transfected cells. J. Biol. Chem. 274, 8597–8603 (1999).

    Article  CAS  Google Scholar 

  16. Pearson, W. R. & Lipman, D. J. Improved tools for biological sequence comparison. Proc. Natl Acad. Sci. USA 85, 2444–2448 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Ellis, C. et al. EP874047A2: cDNA clone HMTMF81 that encodes a novel human 7-transmembrane receptor.Eur. Patent Applic. EP0874047A2 (1998).

  18. Chan, C. et al. Leukotriene D4-induced increases in cytosolic calcium in THP-1 cells: dependence on extracellular calcium and inhibition with selective leukotriene D4 receptor antagonists. J. Pharmacol. Exp. Ther. 269, 891–896 ( 1994).

    CAS  PubMed  Google Scholar 

  19. Jones, T. R. et al. Pharmacology of L-660,711 (MK-571): a novel, potent and selective leukotriene D4 receptor antagonist. Can. J. Physiol. Pharmacol. 67, 17–28 ( 1989).

    Article  CAS  Google Scholar 

  20. McClintock, T. S., Rising, J. P. & Lerner, M. R. Melanophore pigment dispersion responses to agonists show two patterns of sensitivity to inhibitors of cAMP-dependent protein kinase and protein kinase C. J. Cell. Physiol. 167, 1–7 (1996).

    Article  CAS  Google Scholar 

  21. Potenza, M. N., Graminiski, G. F., Schmaus, C. & Lerner, M. R. Functional expression and characterization of human D2 an dD3 dopamine receptors. J. Neurosci. 14, 1463– 1476 (1994).

    Article  CAS  Google Scholar 

  22. Frey, E. A. et al. Characterization of the leukotriene D4 receptor in dimethylsulphoxide-differentiated U937 cells: comparison with the leukotriene D4 receptor in human lung and guinea-pig lung. Eur. J. Pharmacol. 244, 239–250 (1993).

    Article  CAS  Google Scholar 

  23. Metters, K. M. Leukotriene receptors. J. Lipid Mediat. 12, 413–427 (1995).

    Article  CAS  Google Scholar 

  24. Durieux, M. E., Carlisle, S. J., Salafranca, M. N. & Lynch, K. R. Endogenous responses to sphingosine-1-phosphate in X. laevis oocytes: similarities with lysophosphatidic acid signaling. Am. J. Physiol. 264, C1360–C1364 ( 1993).

    Article  CAS  Google Scholar 

  25. Hooks, S. B. et al. Characterization of a receptor subtype-selective lysophosphatidic acid mimetic. Mol. Pharmacol. 53, 188– 194 (1998).

    Article  CAS  Google Scholar 

  26. Kolakowski, L. F. J et al. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J. Neurosci. 71, 2239–2251 (1998).

    CAS  Google Scholar 

  27. Ungrin, M. D. et al. An automated aequorin luminescence-based functional calcium assay for G-protein coupled receptors. Anal. Biochem.(in the press).

  28. Wright, D. H., Metters, K. M., Abramovitz, M. & Ford-Hutchinson, A. W. Characterization of the recombinant prostanoid DP receptor and identification of L-644,698, a novel DP agonist. Br. J. Pharmacol. 123, 1317–1324 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank M. E. Durieux (Dept. Anesthesiology, Univ. Virginia) for the use of his laboratory's oocyte recording equipment, D. Pettibone and R. Gould (Dept. Pharmacology, Merck & Co., West Point, Pennsylvania) for support to the MRL orphan GPCR project, and K. Clark for preparation of the figures. This work was supported in part by grants to K.R.L. from the National Institutes of Health. This paper is dedicated to the late P. J. Piper for her pioneering work in the pharmacological characterization of the cysteinyl leukotrienes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilly F. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lynch, K., O'Neill, G., Liu, Q. et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature 399, 789–793 (1999). https://doi.org/10.1038/21658

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21658

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing