Skip to main content
Log in

DNA Methylation as a Target for Drug Design

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

DNA methylation is essential for normal embryonic development. Distinctive genomic methylation patterns must be formed and maintained with high fidelity to ensure the inactivities of specific promoters during development. The mutagenic and epigenetic aspects of DNA methylation are especially interesting because they may lead to the inactivation of genes which are involved in human carcinogenesis. The mutagenicity of 5-Methylcytosine (5mC) and the role of promoter hypermethylation in gene silencing, particularly in cancer, suggest a clinical significance for the design of novel DNA methylation inhibitors which may be utilized to reverse the effects of DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. M. Gardiner-Garden and M. Frommer. CpG islands in vertebrate genomes. J. Mol. Biol. 196:261–282 (1987).

    Google Scholar 

  2. A. P. Bird. CpG-rich islands and the function of DNA methylation. Nature 321:209–213 (1986).

    Google Scholar 

  3. B. K. Duncan and J. H. Miller. Mutagenic deamination of cytosine residues in DNA. Nature 287:560–561 (1980).

    Google Scholar 

  4. T. H. Bestor and G. L. Verdine. DNA methyltransferases. Curr. Opin. Cell Biol. 6:380–389 (1994).

    Google Scholar 

  5. R. J. Roberts. On base flipping. Cell 82:9–12 (1995).

    Google Scholar 

  6. G. L. Verdine. The flip side of DNA methylation. Cell 76:197–200 (1994).

    Google Scholar 

  7. Y. Gruenbaum, H. Cedar, and A. Razin. Substrate and sequence specificity of a eukaryotic DNA methylase. Nature 295:620–622 (1982).

    Google Scholar 

  8. T. H. Bestor and V. M. Ingram. Two DNA methyltransferases from murine erythroleukemia cells: purification, sequence specificity, and mode of interaction with DNA. Proc. Natl. Acad. Sci. USA 80:5559–5563 (1983).

    Google Scholar 

  9. G. P. Pfeifer, S. Grunwald, T. L. J. Boehm, and D. Drahovsky. Isolation and characterization of DNA cytosine 5-methyltransferase from human placenta. Biochem. Biophy. Acta 740:323–330 (1983).

    Google Scholar 

  10. H. Lei, S. P. Oh, M. Okano, R. Jutterman, K. A. Gross, R. Jaenisch, and E. Li. De novo cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205 (1996).

    Google Scholar 

  11. A. Razin and A. D. Riggs. DNA methylation and gene function. Science 210:604–610 (1980).

    Google Scholar 

  12. D. Jahner, H. Stuhlman, C. L. Stewart, K. Harbers, J. Lohler, L. Simon, and R. Jaenisch. De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628 (1982).

    Google Scholar 

  13. M. Monk, M. Boubelik, and S. Lehnert. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic, and germ cell lineages during mouse embryo development. Development 99:371–382 (1987).

    Google Scholar 

  14. A. Razin and H. Cedar. DNA methylation and embryogenesis. In J. P. Jost and H. P. Saluz (eds.) DNA methylation: Molecular biology and biological significance. Basel Switzerland, Birkhauser Verlag, pp. 343.

  15. D. N. Cooper and H. Y. Youssouffian. The CpG dinucleotide and human genetic disease. Hum. Genet. 78:151–155 (1988).

    Google Scholar 

  16. J. C. Shen, W. M. Rideout III, and P. A. Jones. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22:972–976 (1994).

    Google Scholar 

  17. C. Lengauer, K. W. Kinzler, and B. Vogelstein. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 94:2545–2550 (1997).

    Google Scholar 

  18. P. A. Jones, W. M. Rideout, J. C. Shen, C. H. Spruck, and Y. C. Tsai. Methylation, mutation, and cancer. Bioessays 14:33–36 (1992).

    Google Scholar 

  19. T. C. Brown and J. Jiricny. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54:972–976 (1988).

    Google Scholar 

  20. A. S. Yang, J.-C. Shen, J.-M. Zingg, S. Mi, and P. A. Jones. HhaI and HpaII DNA methyltransferase bind DNA mismatches, methylate uracil, and block DNA repair. Nucleic Acids Res. 23:1380–1387 (1995).

    Google Scholar 

  21. J. C. Wu and D. V. Santi. On the mechanism and inhibition of DNA cytosine methyltransferases. In Biochemistry and Biology of DNA methylation. Prog. Clin. Biol. Res. 198, New York, Liss, pp 119–129.

  22. J. C. Shen, W. M. Rideout, and P. A. Jones. High frequency of mutagenesis by a DNA methyltransferase. Cell 71:1073–1080 (1992).

    Google Scholar 

  23. B. Bandaru, M. Wyszynski, and A. S. Bhagwat. HpaII methyltransferase is mutagenic in Escherichia coli. J. Bacteriol. 177:2950–2952 (1995).

    Google Scholar 

  24. M. Wyszynski, S. Gabbara, and A. S. Bhagwat. Cytosine deaminations catalyzed by DNA cytosine methyltransferases are unlikely to be the major cause of mutational hot spots at sites of cytosine methylation in Escherichia coli Proc. Natl. Acad. Sci. USA 91:1574–1578 (1994).

    Google Scholar 

  25. T. Lindahl and B. Nyberg. Heat-induced deamination of cytosine residues in Deoxyribonucleic Acid. Biochemistry 13:3405–3410 (1974).

    Google Scholar 

  26. M. M. Similie, R. Pascale, M. R. De Miglio, A. Nufris, L. Daino, M. A. Seddaiu, L. Gaspa, and F. Feo. Correlation between S-adenosyl-L-methionine content and production of c-myc, c-Haras, and c-Ki-ras mRNA transcripts in the early stages of rat liver carcinogenesis. Cancer Lett. 79:9–16 (1994).

    Google Scholar 

  27. G. Varela-Moreiras, C. Ragel, and J. Perez de Miguelsanz. Choline deficiency and methotrexate treatment induces marked but reversible changes in hepatic folate concentrations, serum homocysteine, and DNA methylation rates in rats. J. Am. Coll. Nutr. 14:480–485 (1995).

    Google Scholar 

  28. N. Shivapurkar and L. A. Poirier. Tissue levels of S-Adenosylmethionine and S-Adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis 4:1051–1057 (1983).

    Google Scholar 

  29. J. K. Christman, G. Sheikhnejad, M. Dizik, S. Abileah, and E. Wainfan. Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis 14:551–557 (1993).

    Google Scholar 

  30. E. Giovannucci, M. J. Stampfer, G. A. Colditz, E. B. Rimm, D. Trichopoulos, B. A. Rosner, F. E. Speizer, and W. C. Willett. Folate, methionine, and alcohol intake and risk of colorectal adenoma. J. Natl. Cancer Inst. 85:875–884 (1993).

    Google Scholar 

  31. J.-M. Zingg, J. C. Shen, A. S. Yang, H. Rapoport, and P. A. Jones. Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acids Res. 24:3267–3276 (1996).

    Google Scholar 

  32. L. Jackson-Grusby, P. W. Laird, S. N. Magge, B. J. Moeller, and R. Jaenisch. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl. Acad. Sci. USA 94:4681–4685 (1997).

    Google Scholar 

  33. D. Santi, G. Garrett, and P. J. Barr. On the mechanism of inhibition of DNA cytosine methyltransferases by cytosine analogs. Cell 33:9–10 (1983).

    Google Scholar 

  34. X. Cheng. Structure and function of DNA methyltransferases. Annu. Rev. Biohys. Struct. 24:293–318 (1995).

    Google Scholar 

  35. S. Kumar, X. Cheng, S. Klimasauskas, S. Mi, J. Postafi, R. J. Roberts, and G. G. Wilson. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 22:1–10 (1994).

    Google Scholar 

  36. W. M. Rideout III, G. A. Coetzee, A. F. Olumi, and P. A. Jones. 5-methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290 (1990).

    Google Scholar 

  37. M. S. Greenblatt, W. P. Bennett, M. Hollstein, and C. C. Harris. Mutations in the p53 tumor suppressor gene: Clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855–4878 (1994).

    Google Scholar 

  38. A. N. Magewu and P. A. Jones. Ubiquitous and tenacious methylation of the CpG site in codon 248 of the p53 gene may explain its frequent appearance as a mutational hotspot in human cancer. Mol. Cell Biol. 14:4225–4232 (1994).

    Google Scholar 

  39. S. P. Tornaletti and G. P. Pfeifer. Complete and tissue-independent methylation of CpG sites in the p53 gene: implications for mutations in human cancers. Oncogene 10:1493–1499 (1995).

    Google Scholar 

  40. M. F. Denissenko, J. X. Chen, M. S. Tang, and G. P. Pfeifer. Cytosine methylation determines hot spots for DNA damage in the human p53 gene. Proc. Natl. Acad. Sci. USA 94:3893–3898 (1997).

    Google Scholar 

  41. M. F. Denissenko, A. Pao, M. S. Tang, and G. P. Pfeifer. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hot spots in p53. Science 274:430–432 (1996).

    Google Scholar 

  42. M. L. Gonzalgo and P. A. Jones. Mutagenic and epigenetic effects of DNA methylation. Mutation Res. 386:107–118 (1997).

    Google Scholar 

  43. T. Nobori, K. Miura, D. J. Wu, A. Lois, K. Takabayashi, and D. A. Carson. Deletions of the cyclin-dependent kinase 4-inhibitor gene in multiple human cancers. Nature 368:753–756 (1994).

    Google Scholar 

  44. A. P. Feinberg, C. W. Gehrke, K. C. Kuo, and M. Ehrlich. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48:1159–1161 (1988).

    Google Scholar 

  45. S. B. Baylin, E. R. Fearon, B. Vogelstein, A. de Bustros, S. J. Sharks, P. J. Burke, S. P. Staal, and D. Nelkin. Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and myeloid malignancies. Blood 70:412–417 (1987).

    Google Scholar 

  46. R. Stein, A. Razin, and H. Cedar. In vitro methylation of the hamster adenine phosphorybosyltransferase gene inhibits its expression in mouse L cells. Proc. Natl. Acad. Sci. USA 79:3418–3422 (1982).

    Google Scholar 

  47. L. Vardinon, A. Kressmann, H. Cedar, M. Maechler, and W. Doerfler. Expression of a cloned adenovirus gene is inhibited by in vitro methylation. Proc. Natl. Acad. Sci. USA 79:1073–1077 (1982).

    Google Scholar 

  48. R. R. Meehan, J. P. Lewis, S. Mc Kay, E. L. Kleiner, and A. P. Bird. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507 (1989).

    Google Scholar 

  49. P. H. Tate and A. Bird. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Biol. 3:226–231 (1993).

    Google Scholar 

  50. H. Cedar. DNA methylation and gene activity. Cell 53:3–4 (1988).

    Google Scholar 

  51. A. P. Bird. The essentials of DNA methylation. Cell 70:5–8 (1992).

    Google Scholar 

  52. T. L. Kautiainen and P. A. Jones. DNA methyltransferase levels in tumorigenic and nontumorigeneic cells in culture. J. Biol. Chem. 261:1594–1598 (1986).

    Google Scholar 

  53. V. Greger, E. Passarge, W. Hopping, E. Messmer, and B. Horsethmke. Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum. Genet 83:155–158 (1989).

    Google Scholar 

  54. T. Sakai, J. Togushida, N. Ohtani, D. W. Yandell, J. Rapaport, and T. P. Dryja. Allele-specific hypermethylation of the retinoblastoma tumor suppressor gene. Am. Hum. Genet. 48:880–888 (1991).

    Google Scholar 

  55. J. G. Herman, F. Latif, Y. Weng, M. I. Lerman, B. Zbar, S. Liu, D. Samid, D-S Duan, J. R. Gnarra, W. M. Linehan, and S. B. Baylin. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91:9700–9704 (1994).

    Google Scholar 

  56. Y. L. Ottaviano, J. P. Issa, F. F. Park, H. S. Smith, S. B. Baylin, and N. E. Davidson. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 54:2552–2555 (1994).

    Google Scholar 

  57. A. T. Ferguson, R. G. Lapidus, S. B. Baylin, and N. E. Davidson. Demethylation of the estrogen receptor-negative breast cancer cells can reactivate estrogen receptor gene expression. Cancer Res. 55:2279–2283 (1995).

    Google Scholar 

  58. J. P. Issa, B. A. Zenbauer, C. J. Civin, M. I. Collector, S. J. Sharkis, N. E. Davidson, S. H. Kaufman, and S. B. Baylin. The estrogen receptor CpG island is methylated in most hematopoetic neoplasms. Cancer Res. 56:973–977 (1996).

    Google Scholar 

  59. J. P. Issa, Y. L. Ottaviano, P. Celano, S. R. Hamilton, N. E. Davidson, and S. B. Baylin. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nat. Genet. 7:536–540 (1994).

    Google Scholar 

  60. J. P. Issa, S. B. Baylin, and S. A. Belinsky. Methylation of the estrogen receptor CpG island in lung tumors is related to the specific type of carcinogen exposure. Cancer Res. 56:3655–3658 (1996).

    Google Scholar 

  61. K. Yoshiura, Y. Kanai, A. Ochiai, Y. Shimoyama, T. Sugimura, and S. Hirohashi. Silencing of the E-Cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA 92:7416–7419 (1995).

    Google Scholar 

  62. R. Hahnel, J. Harvey, and P. Kay. Hypermethylation of the myogeneic gene Myf-3 in human breast carcinomas. Anticancer Res. 16:2111–2115 (1996).

    Google Scholar 

  63. J. G. Herman, J. Jen, A. Merlo, and S. B. Baylin. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15/INK4B. Cancer Res. 56:722–727 (1996).

    Google Scholar 

  64. J. G. Herman, L. Mao, D. J. Lee, E. Gabrielson, P. C. Burger, S. B. Baylin, and D. Sidransky. 5′ CpG island methylation is associated with transcriptional silencing of the tumor suppressor p16/MTS1 in human cancers. Nature Med. 1:686–692 (1995).

    Google Scholar 

  65. J. G. Herman, A. Merlo, L. Mao, R. G. Lapidus, J. P. Issa, N. E. Davidson, D. Sidransky, and S. B. Baylin. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 55:4525–4530 (1995).

    Google Scholar 

  66. M. Gonzalez-Zulueta, C. M. Bender, A. S. Yang, T. Nguyen, R. W. Beart, J. M. Van Tornout, and P. A. Jones. Methylation of the 5′ CpG island of the p16 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55:4531–4535 (1995).

    Google Scholar 

  67. J. F. Costello, M. S. Berger, H-T Huang, and W. K. Cavenee. Silencing of p16/CDKN2 expression in human gliomas by methylation and chromatin condensation. Cancer Res. 56:2405–2410 (1996).

    Google Scholar 

  68. K. W. Lo, S.-T. Cheung, Aran Hasselt, Y. S. Tsang, K. F. Mak, Y. F. Cheng, K. K. S. Woo, J. C. K. Lee, and D. P. Huang. Hypermethylation of the p16 gene in nasopharyngeal carcinoma. Cancer Res. 56:2721–2725 (1996).

    Google Scholar 

  69. Y. Zhang, T. Shields, T. Crenshaw, Y. Hao, T. Moulton, and B. Tycko. Imprinting of human H19: allele-specific CpG methylation, loss of the active allele in Wilms' tumor and potential for somatic allele switching. Am. J. Hum. Genet. 53:113–124 (1993).

    Google Scholar 

  70. J. B. Nelson, W.-L. Lo, S. H. Nguyen, D. F. Jarrad, J. D. Brooks, S. R. Magnuson, T. J. Opgenorth, W. G. Nelson, and S. G. Bova. Methylation of the 5′ CpG island of the Endothelin B receptor gene is common in human prostate cancer. Cancer Res. 57:35–37 (1997).

    Google Scholar 

  71. M. Zion, D. Ben Yehuda, A. Avraham, O. Cohen, M. Wetzler, D. Melloul, and Y. Ben Neriah. Progressive de novo methylation at the bcr-abl locus in the course of chronic myelogenous leukemia. Proc. Natl. Acad. Sci. USA 91:10722–10726 (1994).

    Google Scholar 

  72. A. Dobrovic and D. Simpfendorfer. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 57:3347–3350 (1997).

    Google Scholar 

  73. S. B. Baylin, M. Makos, J. Wu, R.-W. C. Yen, A. deBustros, P. Vertino, and B. D. Nelkin. Abnormal patterns of DNA methylation in human neoplasia: potential consequences for tumor progression. Cancer Cells 3:383–390 (1991).

    Google Scholar 

  74. P. A. Jones. DNA methylation errors and cancer. Cancer Res. 56:2463–2467 (1996).

    Google Scholar 

  75. P. A. Jones, M. J. Wolkowicz, W. M. Rideout, F. G. Gonzales, C. M. Marziasz, G. A. Coetzee, and S. J. Tapscott. De novo methylation of the MyoD1 CpG island during the establishment of immortal cell lines. Proc. Natl. Acad. Sci. USA 87:6117–6121 (1990).

    Google Scholar 

  76. F. Antequera, J. Boyes, and A. Bird. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514 (1990).

    Google Scholar 

  77. A. G. Knudson. Hereditary cancers of man. Cancer Inv. 1:187–193 (1983).

    Google Scholar 

  78. T. Ushijima, K. Morimura, Y. Hosoya, H. Okonogi, M. Tatematsu, T. Sugimura, and M. Nagao. Proc. Natl. Acad. Sci. USA 94:2284–2289 (1997).

    Google Scholar 

  79. M. Schmid, D. Grunert, T. Haaf, and W. Engel. A direct demonstration of somatically paired heterochromatin of human chromosomes. Cytogenet. Cell. Genet. 36:554–561 (1983).

    Google Scholar 

  80. M. Schmid, T. Haaf, and D. Grunert. 5-Azacytidine-induced under-condensation in human chromosomes. Hum. Genet. 67:257–263 (1984).

    Google Scholar 

  81. P. A. Jones and S. M. Taylor. Cellular differentiation, cytidine analogs, and DNA methylation. Cell 20:85–93 (1980).

    Google Scholar 

  82. C. Taylor, K. Ford, B. A. Connolly, and D. P. Hornby. Determination of the order of substrate addition to MspI DNA methytransferase using a novel mechanism-based inhibitor. Biochem. J. 291:493–504 (1993).

    Google Scholar 

  83. A. R. MacLeod and M. Szyf. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J. Biol. Chem. 270:8037–8043 (1995).

    Google Scholar 

  84. S. Ramchandani, A. R. MacLeod, M. Pinard, E. von Hofe, and M. Szyf. Inhibition of tumorigenesis by a cytosine-DNA methyltransferase antisense oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 94:684–689 (1997).

    Google Scholar 

  85. S. F. De Cabo, J. Santos, and J. Fernandez Piqueras. Molecular and cytological evidence of S-adenosyl-L-homocysteine as an innocuous undermethylating agent in vivo. Cytogenet. Cell Genet. 71:187–192 (1995).

    Google Scholar 

  86. R. T. Borchardt. S-Adenosyl-L-methionone-Dependent Macromolecule Methyltransferases: Potential targets for the design of chemotherapeutic agents. J. Med. Chem. 23:347–356 (1980).

    Google Scholar 

  87. W. K. Long, G. E. Fronko, R. G. Lindmeyer, B. Wu, and E. E. Henderson. Effects of S-Adenosylhomocysteine and analogs on Epstein-Barr virus-induced transformation, expression of the Epstein Barr virus capsid antigen, and methylation of Epstein Barr virus DNA. J. Virol. 61:221–224 (1987).

    Google Scholar 

  88. P. Blanchard, N. Dodic, J. L. Fourrey, F. Lawrence, A. M. Mouna, and M. Robert-Gero. Synthesis and biological activity of sinefungin analogues. J. Med. Chem. 34:2798–2803 (1991).

    Google Scholar 

  89. K. Shinkai, M. Mukai, T. Horai, H. Ohigashi, S. Nishikawa, H. Inoue, Y. Takeda, and H. Akedo. Inhibition of in vitro tumor cell invasion by transmethylation inhibitors. Jpn. J. Cancer Res. 80:716–719 (1989).

    Google Scholar 

  90. D. M. Woodcock, J. K. Adams, R. G. Allan, and I. A. Cooper. Effect of several inhibitors of enzymatic DNA methylation on the in vivo methylation of different classes of DNA sequences in a cultured human cell line. Nucleic Acids Res. 11:489–499 (1983).

    Google Scholar 

  91. G. V. Moreiras, C. Ragel, and J. Perez de Miguelsanz. Choline deficiency and methotrexate treatment induces marked but reversible changes in hepatic folate concentrations, serum homocysteine, and DNA methylation rates in rats. J. Am. Coll. Nutr. 14:480–485 (1995).

    Google Scholar 

  92. J. Nyce. Drug-induced DNA hypermethylation and drug resistance in human tumors. Cancer Res. 49:5829–5836 (1989).

    Google Scholar 

  93. D. L. Kramer, C. W. Porter, R. T. Borchardt, and J. R. Sufrin. Combined modulation of S-adenosylmethionine biosynthesis and S-adenosylhomocysteine metabolism enhances inhibition of nucleic acid methylation and L1210 cell growth. Cancer Res. 50:3838–3842 (1990).

    Google Scholar 

  94. J. K. Christman, P. Price, L. Pedrinan, and G. Acs. Correlation between hypomethylation of DNA and expression of globin genes in Friend erythroleukemia cells. Eur. J. Biochem. 81:53–61 (1977).

    Google Scholar 

  95. T. A. Bestor, S. B. Hellewell, and V. M. Ingram. Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol. Cell Biol. 4:1800–1806 (1984).

    Google Scholar 

  96. G. A. Miura, R. K. Gordon, J. A. Montgomery, and P. K. Chiang. 4′-Thioadenosine as a novel inhibitor of S-adenosyl homocysteine hydrolase and an inducer for the differentiation of HL-60 human leukemia cells. Adv. Exp. Med. Biol. 195:667–672 (1986).

    Google Scholar 

  97. J. Aarbakke, G. A. Miura, P. S. Prytz, A. Bessesen, L. Sirdal, R. K. Gordon, and P. K. Chiang. Induction of HL-60 cell differentiation by 3-deaza-(+)-aristeromycin, an inhibitor of S-adenosylhomocysteine hydrolase. Cancer Res. 46:5469–5492 (1988).

    Google Scholar 

  98. O. Heby. DNA methylation and polyamines in embryonic-development and cancer. Int. J. Dev. Biol. 39:737–757 (1995).

    Google Scholar 

  99. C. W. Porter and J. R. Sufrin. Interference with polyamine biosynthesis and/or function by analogs of polyamines or methionine as a potential anticancer chemotherapeutic strategy. Anticancer. Res. 6:525–542 (1986).

    Google Scholar 

  100. A. E. Pegg and R. P. McCann. S-Adenosylmethionine decarboxylase as an enzyme target for therapy. Pharmacol. Ther. 56:369–377 (1992).

    Google Scholar 

  101. K. Lertratanangkoon, R. S. Orkiszewski, and J. M. Scimeca. Methyl-donor deficiency due to chemically induced glutathione depletion. Cancer Res. 56:995–1005 (1996).

    Google Scholar 

  102. J. Quddus, K. J. Johnson, J. Gavalchin, E. P. Amento, C. E. Chrisp, R. L. Yung, and B. C. Richardson. Treating activated CD4+ T cells with either of two distinct DNA methyltransferase inhibitors, 5-azacytidine or procainamide, is sufficient to cause a lupus-like disease in syngeneic mice. J. Clin. Invest. 92:38–53 (1993).

    Google Scholar 

  103. J. L. Counts, J. I. Sarmiento, M. L. Harbison, J. C. Downing, R. M. McClain, and J. I. Goodman. Cell proliferation and global methylation status changes in mouse liver after phenobarbital and/or choline-devoid, methionine-deficient diet administration. Carcinogenesis 17:1251–1257 (1996).

    Google Scholar 

  104. A. Piskala and F. Sorm. Nucleic acids components and their analogs. Synthesis of L-glycosyl derivatives of 5-azauracil and 5-azacytosine. Coll. Czech. Chem. Commun. 29:2060–2067 (1964).

    Google Scholar 

  105. P. Pithova, A. Piskala, and J. Pitha. Nucleic acid components and their analogs. LXVI Hydrolysis of 5-azacytidine and its connection with biological activity. Collect. Czech. Chem. Commun. 30:2801–2811 (1965).

    Google Scholar 

  106. H. Burchenal, K. Ciovacco, K. Kalaher, T. O'Toole, R. Keifner, M. D. Dowling, C. K. Chu, K. Watanabe, I. Wempen, and J. J. Fox. Antileukemic effects of pseudoisocytidine, a new synthetic Pyrimidine C-Nucleoside. Cancer Res. 36:1520–1523 (1978).

    Google Scholar 

  107. D. D. Von Hoff, M. Slavik, and F. M. Muggia. A new anticancer drug with effectiveness in acute myelogenous leukemia. Ann. Int. Med. 85:237–245 (1976).

    Google Scholar 

  108. G. E. Rivard, R. L. Momparler, J. Demers, P. Benoit, R. Raymond, K. T. Lin, and L. F. Momparler. Phase I study on 5-Aza-2′-deoxycytidine in children with acute leukemia. Leukemia Res. 5:453–462 (1981).

    Google Scholar 

  109. R. L. Momparler, G. E. Rivard, and M. Gygner. Clinical trial on 5-Aza-2′-deoxycytidine in patients with acute leukemia. Pharmacop. Ther. 30:277–286 (1985).

    Google Scholar 

  110. S. M. Taylor and P. A. Jones. Mechanism of action of eukaryotic DNA methyltransferase: Use of 5-Azacytosine containing DNA. J. Mol. Bio. 162:679–692 (1982).

    Google Scholar 

  111. S. Friedman. The irreversible binding of azacytosine-containing DNA fragments to bacterial DNA (cytosine-5) methyltransferase. Nucleic Acids Res. 260:5698–5705 (1985).

    Google Scholar 

  112. S. Klimasauskas, S. Kumar, R. J. Roberts, and X. Cheng. HhaI methyltransferase flips its target base out of the DNA helix. Cell 76:357–369 (1994).

    Google Scholar 

  113. P. A. Jones and S. M. Taylor. Hemimethylated duplex DNAs prepared from 5-azacytidine treated cells. Nucleic Acids Res. 162:679–692 (1981).

    Google Scholar 

  114. R. L. Momparler and D. Derse. Kinetics of phosphorylation of 5-Aza-2′-deoxycytidine by deoxycytidine kinase. Biochem. Pharmacol. 28:1443–1444 (1979).

    Google Scholar 

  115. S. Gabarra and A. S. Bhagwat. The mechanism of DNA (cytosine-5-)-methyltransferases by 5-azacytosine is likely to involve methyl transfer to the inhibitor. Biochem. J. 307:87–92 (1995).

    Google Scholar 

  116. T. Lee, M. Karon, and R. L. Momparler. Kinetic studies in phosphorylation of 5-Azacytidine with purified uridine-cytidine kinase from calf thymus. Cancer Res. 34:3482–3488 (1974).

    Google Scholar 

  117. R. L. Momparler, S. Siegel, F. Avila, and T. Lee. Effect of tRNA from 5-Azacytidine treated hamster fibrosarcoma cells on in vitro protein synthesis in a cell-free system. Biochem. Pharmacol. 25:389–392 (1976).

    Google Scholar 

  118. R. L. Momparler and Joel Goodman. In vitro cytotoxic and biochemical effects of 5-Aza-2′-deoxycytidine. Cancer Res. 37:1636–1639 (1977).

    Google Scholar 

  119. R. Juttermann, E. Li, and R. Jaenisch. Toxicity of 5′-Aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than by DNA hypomethylation. Proc. Natl. Acad. Sci. USA 91:11797–11801 (1994).

    Google Scholar 

  120. L. H. Li, E. J. Olin, H. H. Buskirk, and L. M. Reinke. Cytotoxicity and mode of action of 5-Azacytidine on L1210 leukemia. Cancer Res. 36:2760–2769 (1970).

    Google Scholar 

  121. R. L. Momparler, J. Samson, L. F. Momparler, and G. E. Rivard. Cell cycle effects and cellular pharmacology of 5-aza-2′-deoxycytidine. Cancer Chemother. Pharmac. 13:191–194 (1984).

    Google Scholar 

  122. M. Karon, L. Sieger, S. Leimbrock, J. Z. Finkelstein, M. E. Nesbit, and J. Swaney. 5-Azacytidine: A new active agent for the treatment of acute leukemia. Blood 42:359–365 (1973).

    Google Scholar 

  123. L. A. Michalowsky and P. A. Jones. Differential nuclear protein binding to 5-Azacytosine-containing DNA as a potential mechanism for 5-Aza-2′-deoxycytidine resistance. Mol. Cell. Biol. 7:3076–3083 (1987).

    Google Scholar 

  124. P. W. Laird, L. Jackson-Grusby, A. Fazeli, S. L. Dickenson, W. E. Jung, E. Li, R. A. Weinberg, and R. Jaenisch. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205 (1995).

    Google Scholar 

  125. S. M. Taylor and P. A. Jones. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 17:777–779 (1979).

    Google Scholar 

  126. F. Creusot, G. Acs, and J. K. Christman. Inhibition of DNA methyltransferase and induction of Friend erythroleukemia cell differentiation by 5-azacytidine and 5-Aza-2′-deoxycytidine. J. Biol. Chem. 257:2041–2048 (1982).

    Google Scholar 

  127. E. J. Freirich, G. P. Bodey, J. E. Harris, and J. S. Hart. Therapy for acute granulocytic leukemia. Cancer Res. 27:2573–2578 (1962).

    Google Scholar 

  128. A. Pinto and V. Zagonel. 5-Aza-2′-deoxycytidine in the treatment of acute myeloid leukemias and myelodysplastic syndromes: past, present, and future trends. Leukemia 7:51–60 (1993).

    Google Scholar 

  129. A. E. Pegg, J. A. Secrist, and R. Madhubala. Properties of L1210 cells resistant to alpha-difluoromethylornithine. Cancer Res. 48:759–774 (1988).

    Google Scholar 

  130. J. Janne, L. Alhonen, and P. Leinonen. Polyamines: from molecular biology to clinical applications. Ann. Med. 23:241–259 (1991).

    Google Scholar 

  131. P. K. Chiang, R. K. Gordon, J. Tal, G. C. Zeng, B. P. Doctor, K. Pardhasaradhi, and P. P. McCann. S-Adenosylmethionine and methylation. FASEB J. 10:471–480 (1996).

    Google Scholar 

  132. J. B. Lombardini, A. W. Coulter, and P. Talalay. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Mol. Pharmacol. 6:481–499 (1970).

    Google Scholar 

  133. A. W. Coulter, J. B. Lombardini, and P. Talalay. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-Adenosyl-L-methionine I. Saturated and unsaturated aliphatic amino acids. Mol. Pharmacol. 10:293–304 (1974).

    Google Scholar 

  134. A. W. Coulter, J. B. Lombardini, and P. Talalay. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-Adenosyl-L-methionine II. Aromatic amino acids. Mol. Pharmacol. 10:305–318 (1974).

    Google Scholar 

  135. A. W. Coulter, J. B. Lombardini, and P. Talalay. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-Adenosyl-L-methionine III. Carboxylic and heterocyclic amino acids. Mol. Pharmacol. 10:319–331 (1974).

    Google Scholar 

  136. J. R. Sufrin, A. W. Coulter, and P. Talalay. Structural and conformational analogues of L-methionine as inhibitors of the enzymatic synthesis of S-Adenosyl-L-methionine IV. Further mono-bi-and tricyclic amino acids. Mol. Pharmacol. 15:661–677 (1979).

    Google Scholar 

  137. F. Schlenk, C. H. Hanuum, and A. J. Ferro. Arch. Biochem. Biophys. 187–194 (1978).

  138. J.-M. Zingg and P. A. Jones. Genetic and epigenetic aspects of DNA methylation on genome expression, evolution, mutation and carcinogenesis. Carcinogenesis 18:101–114 (1997).

    Google Scholar 

  139. E. De Clercq. S-Adenosylhomocysteine hydrolase inhibitors as broadspectrum antiviral agents. Biochem. Pharmacol. 36:2567–2575 (1987).

    Google Scholar 

  140. C. M. Bender, M. M. Pao, and P. A. Jones. Inhibition of DNA methylation by 5-Aza-2′-deoxycytidine suppresses the growth of human tumor cell lines. Cancer Res. 58:95–101 (1998).

    Google Scholar 

  141. R. L. Momparler. Molecular, cellular, and animal pharmacology of 5-aza-2′-deoxycytidine. Pharmacop. Ther. 30:287–299 (1985).

    Google Scholar 

  142. R. L. Momparler and D. M. Fambrough. Molecular forms of chicken embryo aetylcholineesterase in vitro and in vivo. Isolation and characterization. J. Biol. Chem. 254:4790–4799 (1979).

    Google Scholar 

  143. R. L. Momparler, J. Veseley, L. F. Momparler, and G. E. Rivard. Synergistic action of 5-aza-2′-deoxycytidine and 3-deazauridine on L1210 leukemia cells and EMT6 tumor cells. Cancer Res. 39:3822–3827 (1979).

    Google Scholar 

  144. A. W. Harris, E. C. Reynolds, and L. R. Finch. Effect of thymidine on the sensitivity of cultured mouse tumor cells to 1-B-arabinofuranosylcytosine. Cancer Res. 39:538–541 (1979).

    Google Scholar 

  145. B. R. de Saint-Vincent, M. Dechamps, and G. Buttin. The modulation of the thymidine triphosphate pool of chinese hamster cells by dCMP deaminase and UDP reductase: thymidine auxotrophy induced by CTP in dCMP deaminase-deficient line. J. Biol. Chem. 255:162–167 (1980).

    Google Scholar 

  146. E. C. Moore and R. B. Hurlbert. Regulation of mammalian deoxyribonucleotide biosynthesis by nucleotides as activators and inhibitors. J. Biol. Chem. 241:4802–4809 (1966).

    Google Scholar 

  147. F. G. Scarano, G. Geraci, and M. Rossi. Deoxycytidylate aminohydrase. II. Kinetic properties. The activatory effect of deoxycytidine triphosphate and the inhibitory effect of deoxythymidine triphosphate. Biochemistry 6:192–201 (1967).

    Google Scholar 

  148. R. L. Momparler and N. Onetto. Drug resistance to cytosine arabinoside. In D. Kessel (ed.). Resistance to Antineoplastic drugs, CRC press, Boca Raton, 1988, pp 354–367.

    Google Scholar 

  149. R. L. Momparler and L. F. Momparler. Chemotherapy of L1210 and L1210/ARA-C leukemia with 5-Aza-2′-deoxycytidine and 3-deazauridine. Cancer Chemother. Pharmacol. 25:51–54 (1989).

    Google Scholar 

  150. R. L. Momparler, S. Cote, and N. Eliopoulos. Pharmacological approach for optimization of the dose schedule of 5-Aza-2′-deoxycytidine (Decitabine) for the therapy of leukemia. Leukemia 11:175–180 (1997).

    Google Scholar 

  151. K. T. Lin, R. L. Momparler, and G. E. Rivard. High performance liquid chromatographic analysis of chemical stability of 5-Aza-2′-deoxycytidine. J. Pharm. Disc. 70:1228–1232 (1981).

    Google Scholar 

  152. E. J. Freireich. Effect of schedule and combinations on clinical effectiveness of ARA-C in adult acute leukemia. Med. Pediatric. Oncol. 1:169–172 (1982).

    Google Scholar 

  153. H. E. Skipper, F. M. Schabel, L. G. Mellet, J. A. Montgomery, L. J. Wukoff, H. H. Lloyd, and R. W. Brockman. Implications of biochemical, cytokinetic, pharmacologic, and toxicologic relationship of optimal dose schedules. Cancer Chemother. 54:431–450 (1970).

    Google Scholar 

  154. R. L. Momparler, J. Bouchard, N. Onetto, and G. E. Rivard. 5-Aza-2′-deoxycytidine therapy in patients with acute leukemia inhibits DNA methylation. Leukemia Res. 8:181–185 (1984).

    Google Scholar 

  155. R. L. Momparler, J. K. Vesely, L. F. Momparler, and G. E. Rivard. Synergistic action of 5-Aza-2′-deoxycytidine and 3-deazauridine on L1210 leukemic cells and EMT tumor cells. Cancer Res. 39:3822–3827 (1979).

    Google Scholar 

  156. D. Y. Bouffard, L. F. Momparler, and R. L. Momparler. Enhancement of the antileukemic activity of 5-Aza-2′-deoxycytidine by cyclopentyl cytosine in the HL-60 leukemic cell line. Ani-Cancer Drugs 5:223–228 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, C.M., Zingg, JM. & Jones, P.A. DNA Methylation as a Target for Drug Design. Pharm Res 15, 175–187 (1998). https://doi.org/10.1023/A:1011946030404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011946030404

Navigation