Skip to main content
Log in

Modulation of cell calcium signals by mitochondria

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

It is now clearer and clearer that mitochondria play a role, and perhaps an active role, in cell calcium signalling. The fact that mitochondria can exhibit a Ca2+>-induced Ca2+> release (mCICR, Ichas et al. [37]) reinforces this concept and makes the mitochondria an essential element in the relay of Ca2+> wave propagation. It must be emphasized that the modulation of cell Ca2+> signals by mitochondria depends upon their energetic status, thus making mitochondria an essential link between energy metabolism and calcium signalling inside the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rizzuto R, Simpson AWM, Brini M, Pozzan T: Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358: 325–327, 1992

    Google Scholar 

  2. Rizzuto R, Brini M, Murgia M, Pozzan T: Microdomains with high Ca2+ close to IP3-sensitive channels are sensed by neighboring mitochondria. Science 262: 744–747, 1993

    Google Scholar 

  3. Rizzuto R, Bastianutto M, Brini M, Murgia M, Pozzan T: Mitochondrial Ca2+ homeostasis in intact cells. J Cell Biol 126: 1183–1194, 1994

    Google Scholar 

  4. Rutter GA, Theler JM, Murgia M, Wolheim CB, Pozzan T, Rizzuto R: Increased Ca2+ influx raises mitochondrial free Ca2+ to micromolar levers in a pancratic beta-cell line. J Biol Chem 268: 22385–22390, 1993

    Google Scholar 

  5. Lawrie AM, Rizzuto R, Pozzan T, Simpson AWM: A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells. J Biol Chem 271: 10753–10759, 1996

    Google Scholar 

  6. Gunter TE, Gunter KK, Sheu SS, Gavin CE: Mitochondrial Ca2+ transport: Physiological and pathological relevance. Am J Physiol 267: C313–C339, 1994

    Google Scholar 

  7. McCormack JC, Halestrap AP, Denton RM: Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70: 391–495, 1990

    Google Scholar 

  8. McCormack JG, Denton RM: Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism. News Physiol Sci 9: 71–76, 1994

    Google Scholar 

  9. Gunter TE, Pfeiffer DR: Mechanisms by which mitochondria transport calcium. Am J Physiol 258: C755–C786, 1990

    Google Scholar 

  10. McMillin-Wood J, Wolkowicz PE, Chu A, Tate CA, Goldstone MA, Entman ML: Calcium uptake by two preparations of mitochondria from heart. Biochem Biophys Acta 591: 251–265, 1980

    Google Scholar 

  11. Bragadin M, Pozzan T, Azzone GF: Kinetics of Ca2+ carrier in rat liver mitochondria. Biochemistry 18: 5972–5978, 1979

    Google Scholar 

  12. Bygrave FL, Reed KC, Spencer T: Cooperative interactions in energydependent accumulation of Ca2+ by isolated rat liver mitochondria. Nature New Biol 230: 89–91, 1971

    Google Scholar 

  13. Heaton GM, Nicholls DG: The Ca2+ conductance of the inner membrane of rat liver mitochondria and the determination of the Ca2+ electrochemical gradient. Biochem J 156: 635–646, 1976

    Google Scholar 

  14. Huston SM, Pfeiffer DR, Lardy HA: Effect of cations and anions on the steady state kinetics of energy-dependent Ca2+ transport in rat liver mitochondria. J Biol Chem 251: 5251–5258, 1976

    Google Scholar 

  15. Reed KC, Bygrave FL: A kinetic study of mitochondrial Ca2+ transport. Eur J Biochem 55: 97–504, 1975

    Google Scholar 

  16. Vinogradov A, Scarpa A: The initial velocities of Ca2+ uptake by rat liver mitochondria. J Biol Chem 248: 5527–5531, 1975

    Google Scholar 

  17. Sparagna GC, Gunter KK, Sheu SS, Gunter TE: Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270: 27510–27515, 1995

    Google Scholar 

  18. Fiskum G, Lehninger AL: Regulated release of Ca2+/2H+ antiport. J Biol Chem 254: 6236–6239, 1979

    Google Scholar 

  19. Puskin JS, Gunter TE, Gunter KK, Russel PR: Evidence for more than one Ca2+ transport mechanism in mitochondria. Biochemistry 15: 3834–3842, 1976

    Google Scholar 

  20. Crompton M, Capano M, Carafoli E: The sodium-induced efflux of calcium from heart mitochondria. A possible mechanism for the regulation of mitochondrial transport. Eur J Biochem 69: 453–4562, 1976

    Google Scholar 

  21. Crompton M, Heid I: The cycling of Ca2+, Na2+, and H+ across the inner membrane of cardiac mitochondria. Eur J Biochem 91: 599–608, 1978

    Google Scholar 

  22. Crompton M, Kunzi M, Carafoli E: The calcium-induced and sodium-induced effluxes of calcium from heart mitochondria. Eur J Biochem 79: 549–558, 1977

    Google Scholar 

  23. Wingrove DE, Gunter TE: Kinetics of mitochondrial calcium transport. II. A kinetic description of the sodium-dependent calcium efflux mechanism of liver mitochondria and inhibition by ruthenium red and by tetraphenylphosphonium. J Biol Chem 261: 15166–15171, 1986

    Google Scholar 

  24. Gavin CE, Gunter KK, Gunter TE: Mn2+ transport across biological membranes may be monitored spectroscopically using Ca2+ indicator dye antipyrylazo III. Anal Biochem 192: 44–48, 1991

    Google Scholar 

  25. Zoratti M, Szabò I: The mitochondrial permeability transition. Biochem Biophys Acta 1241: 139–176, 1995

    Google Scholar 

  26. Petronilli V, Szabò I, Zoratti M: The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259: 137–143, 1989

    Google Scholar 

  27. Tedeschi H, Kinnaly KW, Mannella CA: Properties of channels in the mitochondrial outer membrane. J Bioenerg Biomembr 21: 451–559, 1989

    Google Scholar 

  28. Kinnaly KW, Zorov D, Antonenko Y, Perini S: Calcium modulation of the mitochondrial inner membrane channel activity. Biochem Biophys Res Commun 176: 1183–1188, 1991

    Google Scholar 

  29. Szabò I, Zoratti M: The giant channel of the inner mitochondrial membrane is inhibited by cyclosporine A. J Biol Chem 267: 3376–3379, 1991

    Google Scholar 

  30. Szabò I, Zoratti M: The mitochondrial megachannel is the permeability transition pore. J Bioenerg Biomembr 24: 111–117, 1992

    Google Scholar 

  31. Bernardi P, Broekemeir KM, Pfeiffer DR: Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26: 509–517, 1994

    Google Scholar 

  32. Petronilli V, Cola C, Bernardi P: Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. J Biol Chem 268: 1011–1016, 1993

    Google Scholar 

  33. Nicolli A, Petronilli V, Bernardi P: Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochem 32: 4461–4465, 1993

    Google Scholar 

  34. Altschuld RA, Hohl CM, Castillo LC, Garleb AA, Starling RC, Brierley GP: Cyclosporin inhibits mitochondrial calcium efflux in isolated adult rat ventricular cardiomyocytes. Am J Physiol 262: H1699–H1704, 1992

    Google Scholar 

  35. Meissner G: Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem 261: 6300–6306, 1986

    Google Scholar 

  36. Bernardi P, Petronilli V: The permeability transition pore as a mitochondrial calcium release channel; a critical appraisal. J Bioenerg Biomembr 28: 129–136, 1996

    Google Scholar 

  37. Ichas F, Jouaville LS, Sidash SS, Mazat J-P, Holmuhamedov EL: Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signaling. FEBS Lett 348: 211–215, 1994

    Google Scholar 

  38. Friel DD, Tsien RW: An FCCP-sensitive Ca2+ store in bullfrog sympathetic neurons and its participation in stimulus-evoked changes in [Ca2+]i. J Neurosci 14: 4007–4024, 1994

    Google Scholar 

  39. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD: Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 77: 438–441, 1996

    Google Scholar 

  40. Herrington J, Park YB, Babcock DF, Hille B: Dominant role of mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron 16: 219–228, 1996

    Google Scholar 

  41. Budd SL, Nicholls DG: A re-evaluation of the role of mitochondria in neuronal calcium homeostasis. J Neurochem 66: 403–411, 1996

    Google Scholar 

  42. Babcock DF, Herrington J, Goodwin PC, Park YB, Hille B: Mitochondrial participation in the intracellular Ca2+ network. J Cell Biol 136: 833–844, 1997

    Google Scholar 

  43. Simpson PB, Russel JT: Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. J Biol Chem 271: 33493–33501, 1996

    Google Scholar 

  44. Ichas F, Jouaville LS, Mazat JP: Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89: 1145–1153, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jouaville, L.S., Ichas, F. & Mazat, JP. Modulation of cell calcium signals by mitochondria. Mol Cell Biochem 184, 371–376 (1998). https://doi.org/10.1023/A:1006850121769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006850121769

Navigation