Réunion
Equilibre acide-base et cerveauAcid-base balance and brain*

https://doi.org/10.1016/S0750-7658(94)80194-0Get rights and content

Résumé

Dans les conditions physiologiques, la régulation de l'équilibre acide-base cérébral assure une remarquable stabilité du pH cérébral. Au cours des déséquilibres acidobasiques périphériques, le pH cérébral est mieux contrôlé lors des déséquilibres d'origine métabolique que respiratoire. Les mécanismes permettant de limiter les variations trop importantes du pH cérébral agissent principalement en modifiant la Pco2 et la concentration de bicarbonate du liquide extracellulaire cérébral. Ils mettent en jeu des phénomènes régulateurs métaboliques, ventilatoires et circulatoires. Les déséquilibres acidobasiques d'origine respiratoire peuvent modifier le débit sanguin et les fonctions cérébrales. Le traitement des déséquilibres acidobasiques périphériques et en particulier des acidoses métaboliques peut être responsable de complications neurologiques : acidose cérébrale paradoxale ou œdème cérébral. L'hypocapnie modérée utilisée pour traiter les hypertensions intracrâniennes est efficace, en particulier lorsque le débit sanguin cérébral est élevé et la réactivité au CO2 conservée, à condition de maintenir la pression de perfusion cérébrale et de surveiller la différence artérioveineuse en oxygène du cerveau. Un phénomène d'échappement semble apparaître, si l'hypocapnie est maintenue de façon prolongée.

Abstract

In physiological conditions, the regulation of acid-base balance in brain maintains a noteworthy stability of cerebral pH. During systemic metabolic acid-base imbalances cerebral pH is well controlled as the blood/brain barrier is slowly and poorly permeable to electrolytes (HCO3 and H+). Cerebral pH is regulated by a modulation of the respiratory drive, triggered by the early alterations of interstitial fluid pH, close to medullary chemoreceptors. As blood/brain barrier is highly permeable to Co2, CSF pH is corrected in a few hours, even in case of severe metabolic acidosis and alkalosis. Conversely, during ventilatory acidosis and alkalosis the cerebral pH varies in the same direction and in the same range than blood pH. Therefore, the brain is better protected against metabolic than ventilatory acid-base imbalances. Ventilatory acidosis and alkalosis are able to impair cerebral blood flow and brain activity through interstitial pH alterations. During respiratory acidosis, [Hco3] increases in extracellular fluids to control cerebral pH by two main ways : a carbonic anhydrase activation at the blood/brain and blood/CSF barriers level and an increase in chloride shift in glial cells (Hco3 exchanged for Cl). During respiratory alkalosis, [Hco3] decreases in extracellular fluids by the opposite changes in Hco3 transport and by an increase in lactic acid synthesis by cerebral cells. The treatment of metabolic acidosis with bicarbonates may induce a cerebral acidosis and worsen a cerebral oedema during ketoacidosis. Moderate hypocapnia carried out to treat intracranial hypertension is mainly effective when cerebral blood flow is high and vascular Co2 reactivity maintained. Hypocapnia may restore an altered cerebral blood flow autoregulation. Instrumental hypocapnia requires a control of cerebral perfusion pressure and cerebral arteriovenous difference for oxygen, to select patients for whom this kind of treatment may be of benefit, to choose the optimal level of hypocapnia and to avoid any deleterious effect. If hypocapnia is maintained over several days, an adaptation of CSF pH may limit the therapeutic effect on the cerebral blood flow and the intracranial pressure.

Bibliographie (47)

  • ColdGE et al.

    The cerebrovascular CO2 reactivity during the acute phase of brain injury

    Acta Anaesthesiol Scand

    (1977)
  • ColdGE et al.

    Effect of two levels of induced hypocapnia on cerebral autoregulation in acute phase of head injury coma

    Acta Anaesthesiol Scand

    (1981)
  • EnevoldsenEM et al.

    Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury

    J Neurosurg

    (1978)
  • FenclV et al.

    Respiration and cerebral blood flow in metabolic acidosis and alkalosis in humans

    J Appl Physiol

    (1969)
  • FortuneJB et al.

    Human cerebrovascular response to oxygen and carbon dioxide as determined by internal carotid artery duplex scanning

    J Trauma

    (1992)
  • FrankelH et al.

    Regulation of CSF composition blocking chloride-bicarbonate exchange

    J Appl Physiol

    (1983)
  • GrubbRL et al.

    The effects of changes in Paco2 on cerebral blood volume, blood flow, and vascular mean transit time

    Stroke

    (1974)
  • HansenNB et al.

    Alterations in cerebral blood flow and oxygen consumption during prolonged hypocarbia

    Pediatr Res

    (1986)
  • HarderDR et al.

    Cellular mechanism of force development in cat middle cerebral artery by reduced PCO2

    Pflügers Arch

    (1985)
  • HarperAM et al.

    The effect of metabolic acidosis and alkalosis on the blood flow through the cerebral cortex

    J Neurol Neurosurg Psychiatr

    (1963)
  • HavillJH

    Prolonged hyperventilation and intracranial pressure

    Crit Care Med

    (1984)
  • HoopB et al.

    Relationship between central nervous system hydrogen ion regulation and amino acid metabolism in hypercapnia

    Am Rev Respir Dis

    (1983)
  • JavaheriS et al.

    Ventilatory drive in acute metabolic acidosis

    J Appl Physiol

    (1979)
  • Cited by (10)

    • The distribution of neural nitric oxide synthase-positive cerebrospinal fluid-contacting neurons in the third ventricular wall of male rats and coexistence with vasopressin or oxytocin

      2005, Brain Research
      Citation Excerpt :

      Therefore, these nNOS-CSF-CNs may participate in the regulation of PVN activity. They may receive some physical and chemical changes in the CSF, such as pH and osmolality change under hypertonic blood volume expansion or dehydration condition [15,32,36]. These changes could then transmit interrelated information (by increasing or decreasing NO secretion) to the PVN, modulating the activity of AVP- or OT-positive neurons in the PVN to further regulate fluid balance and blood pressure by PVN–neurohypophysis–renin–angiotensin axis [21].

    • Metabolic acidosis and organ function

      1999, Reanimation Urgences
    • Internal environment and intracranial hypertension

      1997, Annales Francaises d'Anesthesie et de Reanimation
    View all citing articles on Scopus
    *

    Travail présenté aux XVes Journées de Neuro-Anesthésie-Réanimation de Langue Française couplées aux VIIes Journées Franco-Italiennes de Neuro-Anesthésie, Nice, 18–19 novembre 1993.

    View full text