Skip to main content
Log in

Current Epidemiologic Trends of the Nontuberculous Mycobacteria (NTM)

  • Water and Health (T Wade, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

The nontuberculous mycobacteria (NTM) are waterborne opportunistic pathogens of humans. They are normal inhabitants of premise plumbing, found, for example, in household and hospital shower heads, water taps, aerators, and hot tubs. The hydrophobic NTM are readily aerosolized, and pulmonary infections and hypersensitivity pneumonitis have been traced to the presence of NTM in shower heads. Hypersensitivity pneumonitis in automotive workers was traced to the presence of NTM in metal recovery fluid used in grinding operations. Recently, NTM bacteremia in heart transplant patients has been traced to the presence of NTM in water reservoirs of instruments employed in operating rooms to heat and cool patient blood during periods of mechanical circulation. Although NTM are difficult to eradicate from premise plumbing as a consequence of their disinfectant-resistance and formation of biofilms, measures such as reduction of turbidity and reduction in carbon and nitrogen for growth and the installation of microbiological filters can reduce exposure of NTM to susceptible individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Tortoli E. Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev. 2003;16:319–54. This review provides a picture of the diversity and range of nontuberculous mycobacterial species and their characteristics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Taylor RM, Norton CD, LeChevallier MW, Falkinham III JO. Susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum to chlorine, chloramine, chlorine dioxide, and ozone. Appl Environ Microbiol. 2000;66:1702–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mullis SN, Falkinham III JO. Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol. 2014;115:908–14.

    Article  Google Scholar 

  4. Wolinsky E. Nontuberculous mycobacteria and associated diseases. Am Rev Respir Dis. 1975;119:107–59.

    Google Scholar 

  5. Arnold C. A scourge returns. Black lung in Appalachia. Environ Health Perspect. 2015;124:A13–8.

    Google Scholar 

  6. Marras TK, Daley CL. Epidemiology of human pulmonary infections with nontuberculous mycobacteria. Clin Chest Med. 2002;23:553–68.

    Article  PubMed  Google Scholar 

  7. Chan ED, Iseman MD. Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gender Med. 2009;7:5–18.

    Article  Google Scholar 

  8. Prevots DR, Marras TK. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin Chest Med. 2015;36:13–34. A contemporary and thorough picture of the epidemiology of the nontuberculous mycobacteria.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wolinsky E. Mycobacterial lymphadenitis in children: a prospective study of 105 nontuberculous cases with long-term follow up. Clin Infect Dis. 1995;20:954–63. The study documenting the disappearance of M. scrofulaceum and its replacement by M. avium in children with cervical lymphadenitis.

  10. Iivanainen E, Sallantaus T, Katila M-J, Martikainen PJ. Mycobacteria in runoff-waters from natural and drained peatlands. J Environ Qual. 1999;28:1226–34.

    Article  CAS  Google Scholar 

  11. Kirschner RA, Parker BC, Falkinham III JO. Epidemiology of infection by nontuberculous mycobacteria. Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum in acid, brown-water swamps of the southeastern United States and their association with environmental variables. Am Rev Respir Dis. 1992;145:271–5.

    Article  PubMed  Google Scholar 

  12. Falkinham III JO, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol. 2001;67:1225–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Falkinham III JO, Iseman MD, de Haas P, van Soolingen D. Mycobacterium avium in a shower linked to pulmonary disease. J Water Health. 2008;6:209–13.

    PubMed  Google Scholar 

  14. Steed KA, Falkinham III JO. Effect of growth in biofilms on chlorine susceptibility of Mycobacterium avium and Mycobacterium intracellulare. Appl Environ Microbiol. 2006;72:4007–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Falkinham III JO. Nontuberculous mycobacteria from household plumbing of patients with nontuberculous mycobacteria disease. Emerg Infect Dis. 2011;17:419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Feazel LM, Baumgartner LK, Peterson KL, Frank DK, Harris JK, Pace NR. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci U S A. 2009;106:16393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De Groot MA, Pace NR, Fulton K, Falkinham III JO. Relationship between Mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol. 2006;72:7602–6.

    Article  Google Scholar 

  18. Pryor M, Springthorpe S, Riffard S, Brooks T, Huo Y, Davis G, et al. Investigation of opportunistic pathogens in municipal drinking water under different supply and treatment regimes. Water Sci Technol. 2004;50:83–90. One of the studies documenting the disappearance of L. pneumophila and increases in the nontuberculous mycobacteria coincident with a shift in disinfectant from chlorine to chloramine in a municipal water system.

  19. Smith RA, Alexander RB, Wolman MG. Water-quality trends in the nation’s rivers. Science. 1987;235:1607–15.

    Article  CAS  PubMed  Google Scholar 

  20. Centers for Disease Control and Prevention. Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous mycobacteria.—Ohio, 2001. Morbid Mortal Wkly Rep. 2002;51:349–52.

    Google Scholar 

  21. Moore JS, Christensen M, Wilson RW, Wallace Jr RJ, Zhang Y, Nash DR, et al. Mycobacterial contamination of metal working fluids: involvement of a possible new taxon of rapidly growing mycobacteria. Am Ind Hyg Assoc J. 2000;61:205–13.

    CAS  Google Scholar 

  22. Huttenen K, Ruotsalainen M, Iivanainen E, Torkko P, Katila M-L, Hirvonen M-R. Inflammatory responses in RAW264-7 macrophages caused by mycobacteria isolated from moldy houses. Environ Toxicol Pharmacol. 2000;8:237–44.

    Article  Google Scholar 

  23. Marras TK, Wallace Jr RJ, Koth LL, Stulbarg MS, Cowl CT, Daley CL. Hypersensitivity pneumonitis reaction to Mycobacterium avium in household water. Chest. 2005;127:664–71.

    Article  PubMed  Google Scholar 

  24. Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, et al. Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis. 2015;61:67–75.

    Article  PubMed  Google Scholar 

  25. U.S. Food and Drug Administration. Nontuberculous Mycobacterium infections associated with heater-cooler devices: FDA safety communication, 2015. http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm466963.htm

  26. European Center for Disease Control. Invasive cardiovascular infection by Mycobacterium chimaera potentially associated with heater-cooler units used during cardiac surgery, 2015. http://ecdc.europa.eu/en/publications/Publications/mycobacterium-chimaera-infection-associated-with-heater-cooler-units-rapid-risk-assessment-30-April-2015.pdf

  27. Rodgers MR, Blackstone BJ, Reyes AL, Covert TC. Colonisation of point of use water filters by silver resistant non-tuberculous mycobacteria. J Clin Pathol. 1999;52:629–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. United Nations Population Division. World Population Ageing: 1950–2050. Page 462. United Nations Population Division, United Nations, New York, 2002. http://www.globalaging.org/ruralaging/world/ageingo/htm

  29. World Health Organization. Nitrate and nitrite in drinking-water. Geneva: World Health Association; 2015. http://www.who.int/water_sanitation_health/dwq/chemicals/nitratesnitrite/en/.

    Google Scholar 

  30. McCarthy CM. Utilization of nitrate or nitrite as single nitrogen source by Mycobacterium avium. J Clin Microbiol. 1987;25:263–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph O. Falkinham III.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

The article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Water and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falkinham, J.O. Current Epidemiologic Trends of the Nontuberculous Mycobacteria (NTM). Curr Envir Health Rpt 3, 161–167 (2016). https://doi.org/10.1007/s40572-016-0086-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0086-z

Keywords

Navigation