Skip to main content

Advertisement

Log in

The Effect of Acute Hypoxia on Short-Circuit Current and Epithelial Resistivity in Biopsies from Human Colon

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aims

In isolated colonic mucosa, decreases in short-circuit current (I SC) and transepithelial resistivity (R TE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia.

Materials and Methods

Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side.

Results

1st series: Dithiothreitol significantly decreased the unstirred layer and I SC but increased R TE. 2nd series: Both hypoxia and ouabain decreased I SC, but ouabain increased R TE and this effect on R TE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of I SC and R TE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation.

Conclusions

In mucolytic concentration, dithiothreitol modifies I SC and R TE. Oxygen supply from the serosal side is more important to sustain I SC and R TE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on R TE suggests that their depressing effect on I SC involves different mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev. 2002;82:245–289.

    PubMed  CAS  Google Scholar 

  2. Binder HJ. Intestinal fluid and electrolyte movement. In: Boron WF, Boulpaep EL, eds. Medical Physiology. Philadelphia, PA: Saunders; 2003:931–946.

    Google Scholar 

  3. Mandel LJ, Balaban RS. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am J Physiol. 1981;240:F357–F371.

    PubMed  CAS  Google Scholar 

  4. Ardawi MS, Newsholme EA. Fuel utilization in colonocytes of the rat. Biochem J. 1985;231:713–719.

    PubMed  CAS  Google Scholar 

  5. Fleming SE, Fitch MD, DeVries S, Liu ML, Kight C. Nutrient utilization by cells isolated from rat jejunum, cecum and colon. J Nutr. 1991;121:869–878.

    PubMed  CAS  Google Scholar 

  6. Latella G, Caprilli R. Metabolism of large bowel mucosa in health and disease. Int J Colorectal Dis. 1991;6:127–132.

    Article  PubMed  CAS  Google Scholar 

  7. Edmonds CJ, Marriott J. Electrical potential and short-circuit current of an in vitro preparation of rat colon mucosa. J Physiol Lond. 1968;194:479–494.

    PubMed  CAS  Google Scholar 

  8. Lew VL. Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum. J Physiol Lond. 1970;206:509–528.

    PubMed  CAS  Google Scholar 

  9. Saraví FD, Saldeña TA, Cincunegui LM. Colon epithelial electrical responses to acute hypoxia and reoxygenation. Acta Gastroenterol Latinoam. 1996;26:159–165.

    PubMed  Google Scholar 

  10. Carra GE, Ibáñez JE, Saraví FD. Electrogenic transport, oxygen consumption, and sensitivity to hypoxia of human colonic epithelium. Int J Colorectal Dis. 2011;26:1205–1210.

    Article  PubMed  Google Scholar 

  11. MacDonald PH. Ischaemic colitis. Best Pract Res Clin Gastroenterol. 2002;16:51–61.

    Article  PubMed  CAS  Google Scholar 

  12. van Haren FM, Sleigh JW, Pickkers P, Van der Hoeven JG. Gastrointestinal perfusion in septic shock. Anaesth Intensive Care. 2007;35:679–694.

    PubMed  Google Scholar 

  13. Petrosyan M, Guner YS, Williams M, Grishin A, Ford HR. Current concepts regarding the pathogenesis of necrotizing enterocolitis. Pediatr Surg Int. 2009;25:309–318.

    Article  PubMed  Google Scholar 

  14. Meyer KF, Martins JL, Freitas Filho LG, et al. Evaluation of an experimental model of necrotizing enterocolitis in rats. Acta Cir Bras. 2006;21:113–118.

    Article  PubMed  Google Scholar 

  15. Leung FW. Endoscopic reflectance spectrophotometry and visible light spectroscopy in clinical gastrointestinal studies. Dig Dis Sci. 2008;53:1669–1677.

    Article  PubMed  Google Scholar 

  16. Suárez F, Furne J, Springfield J, Levitt M. Insights into human colonic physiology obtained from the study of flatus composition. Am J Physiol. 1997;272:G1028–G1033.

    PubMed  Google Scholar 

  17. Sahakian AB, Jee SR, Pimentel M. Methane and the gastrointestinal tract. Dig Dis Sci. 2010;55:2135–2143.

    Article  PubMed  Google Scholar 

  18. Gallavan RH Jr, Parks DA, Jacobson ED. In: Wood JD, ed. Pathophysiology of gastrointestinal circulation. In: Wood JD, ed. Handbook of Physiology, Section 6: The Gastrointestinal System, Vol 1, Part 2. Bethesda, MD: American Physiological Society; 1989:1713–1732.

  19. Guebel DV, Torres NV. A computer model of oxygen dynamics in human colon mucosa: implications in normal physiology and early tumor development. J Theor Biol. 2008;250:389–409.

    Article  PubMed  CAS  Google Scholar 

  20. Saldeña TA, Saraví FD, Hwang HJ, Cincunegui LM, Carra GE. Oxygen diffusive barriers of rat distal colon: role of subepithelial tissue, mucosa, and mucus gel layer. Dig Dis Sci. 2000;45:2108–2114.

    Article  PubMed  Google Scholar 

  21. Weiser MM. Intestinal epithelial cell surface membrane glycoprotein synthesis. I. An indication of cellular differentiation. J Biol Chem. 1973;248:2536–2541.

    PubMed  CAS  Google Scholar 

  22. Saldeña TA, Saraví FD, Arrieta OR, Cincunegui LM, Carra GE. Effect of dithiothreitol on mucus gel layer and electrophysiological properties in rat colon. Rev Esp Fisiol. 1997;53:385–386.

    PubMed  Google Scholar 

  23. Saraví FD, Saldeña TA, Arrieta OR, Cincunegui LM, Carra GE. Concentration-dependence of dithiothreitol effects on rat distal colon electrophysiology. BioCell. 2001;25:283–286.

    PubMed  Google Scholar 

  24. Saraví FD, Saldeña TA, Carrera CA, Ibañez JE, Cincunegui LM, Carra GE. Oxygen consumption and chloride secretion in rat distal colon isolated mucosa. Dig Dis Sci. 2003;48:1767–1773.

    Article  PubMed  Google Scholar 

  25. Diamond JM. A rapid method for determining voltage-concentration relations across membranes. J Physiol Lond. 1966;183:83–100.

    PubMed  CAS  Google Scholar 

  26. Hill AE, Hill BS. Transcellular sodium fluxes and pump activity in Necturus gall-bladder epithelial cells. J Physiol Lond. 1987;382:35–49.

    PubMed  CAS  Google Scholar 

  27. Biber TUL. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. J Gen Physiol. 1971;58:131–144.

    Article  PubMed  CAS  Google Scholar 

  28. Mall M, Bleich M, Schürlein M, et al. Cholinergic ion secretion in human colon requires coactivation by cAMP. Am J Physiol. 1998;275:G1274–G1281.

    PubMed  CAS  Google Scholar 

  29. Mall M, Bleich M, Kuehr J, Brandis M, Greger R, Kunzelmann K. CFTR-mediated inhibition of epithelial Na+ conductance in human colon is defective in cystic fibrosis. Am J Physiol. 1999;277:G709–G716.

    PubMed  CAS  Google Scholar 

  30. Mall M, Gonska T, Thomas J, Hirtz S, Schreiber R, Kunzelmann K. Activation of ion secretion via proteinase-activated receptor-2 in human colon. Am J Physiol Gastrointest Liver Physiol. 2002;282:G200–G210.

    PubMed  CAS  Google Scholar 

  31. Park JH, Rhee PL, Lee JH, et al. Segmental heterogeneity of electrogenic secretions in human ascending colon and rectum. Int J Colorectal Dis. 2006;21:357–364.

    Article  PubMed  Google Scholar 

  32. Larsen R, Mertz-Nielsen A, Hansen MB, Poulsen SS, Bindslev N. Novel modified Ussing chamber for the study of absorption and secretion in human endoscopic biopsies. Acta Physiol Scand. 2001;173:213–222.

    Article  PubMed  CAS  Google Scholar 

  33. Osbak PS, Bindslev N, Poulsen SS, Kaltoft N, Tilotta MC, Hansen MB. Colonic epithelial ion transport is not affected in patients with diverticulosis. BMC Gastroenterol. 2007;7:37.

    Article  PubMed  Google Scholar 

  34. Kaltoft N, Tilotta MC, Witte AB, et al. Prostaglandin E2-induced colonic secretion in patients with and without colorectal neoplasia. BMC Gastroenterol. 2010;10:9.

    Article  PubMed  Google Scholar 

  35. Pullan RD, Thomas GAO, Rhodes M, et al. Thickness of adherent mucus gel on colonic mucosa and its relevance to colitis. Gut. 1994;35:353–359.

    Article  PubMed  CAS  Google Scholar 

  36. Böhme M, Diener M, Rummel W. Chloride secretion induced by mercury and cadmium: action sites and mechanisms. Toxicol Appl Pharmacol. 1992;114:295–301.

    Article  PubMed  Google Scholar 

  37. Luger A, Turnheim J. Modification of cation permeability of rabbit descending colon by sulfhydril reagents. J Physiol Lond. 1981;317:49–66.

    PubMed  CAS  Google Scholar 

  38. Pritcher MCL, Cummings JH. Hydrogen sulphide: a bacterial toxin in ulcerative colitis? Gut. 1996;39:1–4.

    Article  Google Scholar 

  39. Groot JA, Albus H, Bakker R. Analysis of the ouabain-induced increase in transepithelial electrical resistance in the goldfish intestinal mucosa. Pflugers Arch. 1981;392:67–71.

    Article  PubMed  CAS  Google Scholar 

  40. Messner G, Wang W, Paulmichl M, Oberleithner H, Lang F. Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney. Pflugers Arch. 1985;404:131–137.

    Article  PubMed  CAS  Google Scholar 

  41. Larre I, Lazaro A, Contreras RG, et al. Ouabain modulates epithelial cell tight junction. Proc Natl Acad Sci USA. 2010;107:11387–11392.

    Article  PubMed  CAS  Google Scholar 

  42. Saraví FD, Saldeña TA, Cincunegui LM, Carra GE. Asymmetrical oxygen availability from serosal and luminal sides of rat distal colon epithelium. Rev Esp Fisiol. 1997;53:367–376.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Dino Sánchez De Simone and Dr. Jorge Izaguirre, both from the Hospital Español, and Prof. Daniel Mathus, from the Hospital Militar, for their kind collaboration for the obtention of biopsy material. Supported by a grant from the Secretaría de Ciencia y Técnica, Universidad Nacional de Cuyo, Mendoza, Argentina.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando D. Saraví.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carra, G.E., Ibáñez, J.E. & Saraví, F.D. The Effect of Acute Hypoxia on Short-Circuit Current and Epithelial Resistivity in Biopsies from Human Colon. Dig Dis Sci 58, 2499–2506 (2013). https://doi.org/10.1007/s10620-013-2711-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2711-0

Keywords

Navigation