Skip to main content
Log in

Cleavage of MAGI-1, a tight junction PDZ protein, by caspases is an important step for cell-cell detachment in apoptosis

  • Report
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

MAGI-1, a member of the MAGUK family of proteins, is shown to be rapidly cleaved during Fas-induced apoptosis in mouse 3T3 A31 cells, and in UV irradiation- and staurosporine-induced apoptosis in HaCaT cells. This generates a 97 kDa N-terminal fragment that dissociates from the cell membrane; a process that is largely prevented in the presence of the caspase inhibitor Z-VAD-fmk. In addition, we show that in vitro translated radiolabelled MAGI-1 is efficiently cleaved into 97 kDa and 68 kDa fragments by caspases-3 and -7 at physiological concentrations and mutating the MAGI-1 Asp761 to Ala completely abolished the caspase-induced cleavage. Moreover, in HaCaT cells overexpressing the MAGI-1 Asp761Ala mutant the disruption of cell-cell contacts was delayed during apoptosis, whereas other caspase-dependent processes such as nuclear condensation were not affected, suggesting that cell detachment is parallel to them. Thus, MAGI-1 cleavage appears to be an important step in the disassembly of cell-cell contacts during apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Steller H (1995) Mechanism and genes of cellular suicide. Science 267:1445–1449

    Article  PubMed  CAS  Google Scholar 

  2. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  3. Nicholson DW, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 22:299–306

    Article  PubMed  CAS  Google Scholar 

  4. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316

    Article  PubMed  CAS  Google Scholar 

  5. Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446

    Article  PubMed  CAS  Google Scholar 

  6. Brancolini C, Lazarevic D, Rodriguez J, Schneider C (1997) Dismantling cell-cell contacts during apoptosis is coupled to a caspase-dependent proteolytic cleavage of β-catenin. J Cell Biol 139:759–771

    Article  PubMed  CAS  Google Scholar 

  7. Brancolini C, Sgorbissa A, Schneider C (1998) Proteolytic processing of the adherens junctions components β-catenin and γ-catenin/plakoglobin during apoptosis. Cell Death Diff 5:1042–1050

    Article  CAS  Google Scholar 

  8. Van de Craen M, Berx G, Van Den Brande I, Fiers W, Declercq W, Vandenabeele P (1999) Proteolytic cleavage of beta-catenin by caspases: an in vitro analysis. FEBS Lett 458:157–160

    Article  Google Scholar 

  9. Cryns VL, Bergeron L, Zhu H, Li H, Yuan Y (1996) Specific cleavage of alpha-fodrin during Fas- and tumor necrosis factor-induced apoptosis is mediated by an interleukin-1 beta-converting enzyme/ Ced 3 protease distinct from the poly(ADP-ribose)polymerase protease. J Biol Chem 271:31277–31282

    Article  PubMed  CAS  Google Scholar 

  10. Mashima T, Naito M, Noguchi K, Miller DK, Nicholson DW, Tsuruo T (1997) Actin cleavage by CPP-32/apopain during the development of apoptosis. Oncogene 14:1007–1012

    Article  PubMed  CAS  Google Scholar 

  11. Kothakota S, Azuma T, Reinhard C et al (1997) Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298

    Article  PubMed  CAS  Google Scholar 

  12. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276:4972–4980

    Article  PubMed  CAS  Google Scholar 

  13. Levkau B, Herren B, Koyama H, Ross R, Raines EW (1998) Caspase-mediated cleavage of focal adhesion kinase pp125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 187:579–586

    Article  PubMed  CAS  Google Scholar 

  14. Weiske J, Schoneberg T, Schroder W, Hatzfeld M, Tauber R, Huber O (2001) The fate of desmosomal proteins in apoptotic cells. J Biol Chem 276:41175–41181

    Article  PubMed  CAS  Google Scholar 

  15. Bojarski C, Weiske J, Schoneberg T, Schroder W, Mankertz J, Schulzke JD, Florian P, Fromm M, Tauber R, Huber O (2004) The specific fates of tight junction proteins in apoptotic epithelial cells. J Cell Sci 117:2097–2107

    Article  PubMed  CAS  Google Scholar 

  16. Gregorc U, Ivanova S, Thomas M, Turk V, Banks L, Turk B (2005) hDLG/SAP97, a member of the MAGUK protein family, is a novel caspase target during cell-cell detachment in apoptosis. Biol Chem 386:705–710

    Article  PubMed  CAS  Google Scholar 

  17. Fanning AS, Anderson JM (1999) PDZ domains: fundamental building blocks in the organization of protein complexes at the plasma membrane. J Clin Invest 103:767–772

    Article  PubMed  CAS  Google Scholar 

  18. Garner CG, Nash J, Huganir RL (2000) PDZ domains in synapse assembly and signalling. Trends Cell Biol 10:274–280

    Article  PubMed  CAS  Google Scholar 

  19. Anderson JM (1996) Cell signalling: MAGUK magic. Curr Biol 6:382–384

    Article  PubMed  CAS  Google Scholar 

  20. Gomperts SN (1996) Clustering membrane proteins: it’s all coming together with the PSD-95/SAP90 protein family. Cell 84:659–662

    Article  PubMed  CAS  Google Scholar 

  21. Mitic LL, Anderson JM (1998) Molecular architecture of tight junctions. Annu Rev Physiol 60:121–142

    Article  PubMed  CAS  Google Scholar 

  22. Craven SE, Bredt DS (1998) PDZ proteins organize synaptic signaling pathways. Cell 93:495–498

    Article  PubMed  CAS  Google Scholar 

  23. Dobrosotskaya I, Guy RK, James GL (1997) MAGI-1, a membrane-associated guanylate kinase with a unique arrangement of protein-protein interaction domains. J Biol Chem 272:31589–31597

    Article  PubMed  CAS  Google Scholar 

  24. Wood JD, Yuan J, Margolis RL et al (1998) Atrophin-1, the DRPLA gene product, interacts with two families of WW domain-containing proteins. Mol Cell Neurosci 11:149–160

    Article  PubMed  CAS  Google Scholar 

  25. Laura RP, Ross S, Koeppen H, Lasky LA (2002) MAGI-1: a widely expressed, alternatively spliced tight junction protein. Exp Cell Res 275:155–170

    Article  PubMed  CAS  Google Scholar 

  26. Dobrosotskaya IY, James GL (2000) MAGI-1 interacts with beta-catenin and is associated with cell-cell adhesion structures. Biochem Biophys Res Commun 270:903–909

    Article  PubMed  CAS  Google Scholar 

  27. Mino A, Ohtsuka T, Inoue E, Takai Y (2000) Membrane-associated guanylate kinase with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for Rap small G protein GDP/GTP exchange protein at tight junctions. Genes Cells 5:1009–1016

    Article  PubMed  CAS  Google Scholar 

  28. Patrie KM, Drescher AJ, Welihinda A, Mundel P, Margolis B (2002) Interaction of two actin-binding proteins, synaptopodin and alpha-actinin-4, with the tight junction protein MAGI-1. J Biol Chem 277:30183–30190

    Article  PubMed  CAS  Google Scholar 

  29. Hirabayashi S, Tajima M, Yao I, Nishimura W, Mori H, Hata Y (2003) JAM4, a junctional cell adhesion molecule interacting with a tight junction protein, MAGI-1. Mol Cell Biol 23:4267–4282

    Article  PubMed  CAS  Google Scholar 

  30. Glaunsinger BA, Lee SS, Thomas M, Banks L, Javier R (2000) Interactions of the PDZ-protein MAGI-1 with adenovirus E4-ORF1 and high-risk papillomavirus E6 oncoproteins. Oncogene 19:5270–5280

    Article  PubMed  CAS  Google Scholar 

  31. Stennicke HR, Salvesen GS (1997) Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 272:25719–25723

    Article  PubMed  CAS  Google Scholar 

  32. Pace CN, Vajdos F, Fee L, Grimsley G, Gray T (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci 4:2411–2423

    Article  PubMed  CAS  Google Scholar 

  33. Gardiol D, Kühne C, Glaunsinger B, Lee SS, Javier R, Banks L (1999) Oncogenic human papillomavirus E6 proteins target the discs large tumour suppressor for proteasome-mediated degradation. Oncogene 18:5487–5496

    Article  PubMed  CAS  Google Scholar 

  34. Thiagarajan P, Tait JF (1990) Binding of annexin V/placental anticoagulant protein I to platelets. Evidence for phosphatidylserine exposure in the procoagulant response of activated platelets. J Biol Chem 265:17420–17423

    PubMed  CAS  Google Scholar 

  35. Martin SJ, Reutelingsperger CP, McGahon AJ et al (1995) Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med 182:1545–1556

    Article  PubMed  CAS  Google Scholar 

  36. Cirman T, Oresic K, Droga-Mazovec G, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis, mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587

    Article  PubMed  CAS  Google Scholar 

  37. Gumbiner BM (1996) Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84:345–357

    Article  PubMed  CAS  Google Scholar 

  38. Balda MS, Matter K (1998) Tight junctions. J Cell Sci 111:541–547

    PubMed  CAS  Google Scholar 

  39. Tsukita S, Furuse M, Itoh M (1999) Structural and signalling molecules come together at tight junctions. Curr Opin Cell Biol 11:628–633

    Article  PubMed  CAS  Google Scholar 

  40. Jezernik K, Sterle M, Batista U (1997) The distinct steps of cell detachment during development of mouse uroepithelial cells in the bladder. Cell Biol Int 21:1–6

    Article  PubMed  CAS  Google Scholar 

  41. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA (1986) Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol 107:2401–2408

    Article  Google Scholar 

  42. Jesaitis LA, Goodenough DA (1994) Molecular characterization and tissue distribution of ZO-2, a tight junction protein homologous to ZO-1 and Drosophila tumor suppressor gene dlg-A. J Cell Biol 124:949–961

    Article  PubMed  CAS  Google Scholar 

  43. Haskins J, Gu L, Wittchen ES, Hibbard J, Stevenson BR (1998) ZO-3, a novel member of the MAGUK protein family found at the tight junction, interacts with ZO-1 and occludin. J Cell Biol 141:199–208

    Article  PubMed  CAS  Google Scholar 

  44. Matsumine A, Ogai A, Senda T et al (1996) Binding of APC to the human homolog of the Drosophila disc large tumor suppressor protein. Science 272:1020–1023

    Article  PubMed  CAS  Google Scholar 

  45. Wu X, Hepner K, Castelino-Prabhu S et al (2000) Evidence for regulation of the PTEN tumor suppressor by a membrane-localized multi-PDZ domain containing scaffold protein MAGI-2. Proc Natl Acad Sci USA 97:4233–4238

    Article  PubMed  CAS  Google Scholar 

  46. Wu Y, Dowbenko D, Spencer S et al (2000) Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 275:21477–21485

    Article  PubMed  CAS  Google Scholar 

  47. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424

    Article  PubMed  CAS  Google Scholar 

  48. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Diff 6:1028–1042

    Article  CAS  Google Scholar 

  49. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    Article  PubMed  CAS  Google Scholar 

  50. Denault JB, Salvesen GS (2003) Human caspase-7 activity and regulation by its N-terminal peptide. J Biol Chem 278:34042–34050

    Article  PubMed  CAS  Google Scholar 

  51. Stennicke HR, Jürgensmeier JM, Shin H et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090

    Article  PubMed  CAS  Google Scholar 

  52. Torres J, Rodriguez J, Myers MP et al (2003) Phosphorylation-regulated cleavage of the tumor suppressor PTEN by caspase-3: implications for the control of protein stability and PTEN-protein interactions. J Biol Chem 278:30652–30660

    Article  PubMed  CAS  Google Scholar 

  53. Adams CL, Chen Y-T, Smith SJ, Nelson WJ (1998) Mechanism of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein. J Cell Biol 142:1105–1119

    Article  PubMed  CAS  Google Scholar 

  54. Vasioukhin V, Bauer C, Yin M, Fuchs E (2000) Directed actin polymerization is the driving force for epithelial cell-cell adhesion. Cell 100:209–219

    Article  PubMed  CAS  Google Scholar 

  55. Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E (1996) Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 132:451–463

    Article  PubMed  CAS  Google Scholar 

  56. Reuver SM, Garner CG (1998) E-cadherin mediated cell adhesion recruits SAP97 into the cortical cytoskeleton. J Cell Sci 111:1071–1080

    PubMed  CAS  Google Scholar 

  57. Fanning AS, Jameson B, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  PubMed  CAS  Google Scholar 

  58. Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to a-catenin and actin filaments. J Cell Biol 138:181–192

    Article  PubMed  CAS  Google Scholar 

  59. Itoh M, Morita K, Tsukita S (1999) Characterization of ZO-2 as a MAGUK family member associated with tight and adherens junctions with a binding affinity to occludin and a-catenin. J Biol Chem 274:5981–5986

    Article  PubMed  CAS  Google Scholar 

  60. Rosenblatt J, Raff MC, Cramer LP (2001) An epithelial cell destined for apoptosis signals its neighbors to extrude it by an actin- and myosin-dependent mechanism. Curr Biol 11:1847–1857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Turk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregorc, U., Ivanova, S., Thomas, M. et al. Cleavage of MAGI-1, a tight junction PDZ protein, by caspases is an important step for cell-cell detachment in apoptosis. Apoptosis 12, 343–354 (2007). https://doi.org/10.1007/s10495-006-0579-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0579-6

Keywords

Navigation