Skip to main content

Advertisement

Log in

Differential susceptibility to epithelial-mesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The generation of myofibroblasts via epithelial-mesenchymal transition (EMT), a process through which epithelial cells lose their polarity and become motile mesenchymal cells, is a proposed contributory factor in fibrosis of a number of organs. Currently, it remains unclear to what extent epithelia of the upper airways and large intestine are susceptible to this process. Herein, we investigated the ability of model cell lines of alveolar (A549), bronchial (Calu-3) and colonic (Caco-2) epithelial cells to undergo EMT when challenged with transforming growth factor-β1 (TGF-β1) and other pro-inflammatory cytokines. Western blot and immunofluorescence microscopy demonstrated that A549 cells readily underwent EMT, as evidenced by a spindle-like morphology, increase in the mesenchymal marker, vimentin, and down-regulation of E-cadherin, an epithelial marker. In contrast, neither Calu-3 nor Caco-2 cells exhibited morphological changes nor alterations in marker expression associated with EMT. Moreover, whilst stimulation of A549 cells enhanced migration and reduced their proliferative capacity, no such effect was observed in epithelial cell lines of the bronchus or colon. In addition, concomitant treatment of A549 cells with telmisartan, an angiotensin II receptor antagonist with antifibrotic properties, was found to reduce cytokine-induced collagen I production and cell migration, although expression levels of vimentin and E-cadherin remained unaltered. Mechanistically, telmisartan failed to inhibit phosphorylation of Smad2/3. Together, these results, using representative in vitro models of the alveolus, bronchus and colon, tentatively suggest that epithelial cell plasticity and susceptibility to EMT may differ depending on its tissue origin. Furthermore, our investigations point to the beneficial effect of telmisartan in partial abrogation of alveolar EMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bates RC, Pursell BM, Mercurio AM (2007) Epithelial-mesenchymal transition and colorectal cancer: gaining insights into tumor progression using LIM 1863 cells. Cells Tissues Organs 185(1–3):29–39

    Article  PubMed  Google Scholar 

  • Bataille F, Rohrmeier C, Bates R, Weber A, Rieder F, Brenmoehl J, Strauch U, Farkas S, Fürst A, Hofstädter F, Schölmerich J, Herfarth H, Rogler G (2008) Evidence for a role of epithelial mesenchymal transition during pathogenesis of fistulae in Crohn’s disease. Inflamm Bowel Dis 14(11):1514–1527

    Article  PubMed  Google Scholar 

  • Benson SC, Pershadsingh HA, Ho CI, Chittiboyina A, Desai P, Pravenec M, Qi N, Wang J, Avery MA, Kurtz TW (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 43(5):993–1002

    Article  CAS  PubMed  Google Scholar 

  • Borthwick LA, McIlroy EI, Gorowiec MR, Brodlie M, Johnson GE, Ward C, Lordan JL, Corris PA, Kirby JA, Fisher AJ (2010) Inflammation and epithelial to mesenchymal transition in lung transplant recipients: role in dysregulated epithelial wound repair. Am J Transplant 10(3):498–509

    Article  CAS  PubMed  Google Scholar 

  • Brown KA, Aakre ME, Gorska AE, Price JO, Eltom SE, Pietenpol JA, Moses HL (2004) Induction by transforming growth factor-beta1 of epithelial to mesenchymal transition is a rare event in vitro. Breast Cancer Res 6(3):R215–R231

    Article  CAS  PubMed  Google Scholar 

  • Burns WC, Kantharidis P, Thomas MC (2007) The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs 185(1–3):222–231

    Article  CAS  PubMed  Google Scholar 

  • Câmara J, Jarai G (2010) Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis Tissue Repair 3(1):2

    Article  PubMed  Google Scholar 

  • Choi SS, Diehl AM (2009) Epithelial-to-mesenchymal transitions in the liver. Hepatology 50(6):2007–2013

    Article  CAS  PubMed  Google Scholar 

  • Doerner AM, Zuraw BL (2009) TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids. Respir Res 10:100

    Article  PubMed  Google Scholar 

  • Ellenrieder V, Hendler SF, Boeck W, Seufferlein T, Menke A, Ruhland C, Adler G, Gress TM (2001) Transforming growth factor beta1 treatment leads to an epithelial–mesenchymal transdifferentiation of pancreatic cancer cells requiring extracellular signal-regulated kinase 2 activation. Cancer Res 61:4222–4228

    CAS  PubMed  Google Scholar 

  • Gharaee-Kermani M, Hu B, Phan SH, Gyetko MR (2009) Recent advances in molecular targets and treatment of idiopathic pulmonary fibrosis: focus on TGFbeta signaling and the myofibroblast. Curr Med Chem 16(11):1400–1417

    Article  CAS  PubMed  Google Scholar 

  • Grünert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4(8):657–665

    Article  PubMed  Google Scholar 

  • Guarino M, Tosoni A, Nebuloni M (2009) Direct contribution to organ fibrosis: epithelial-mesenchymal transition. Hum Pathol 40(10):1365–1376

    Article  CAS  PubMed  Google Scholar 

  • Heijink IH, Postma DS, Noordhoek JA, Broekema M, Kapus A (2010) House dust mite-promoted epithelial-to-mesenchymal transition in human bronchial epithelium. Am J Respir Cell Mol Biol 42(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Holmes M, Banerjee B, Musk M, Kicic A, Waterer G, Reynolds PN, Hodge G, Chambers DC (2009) Posttransplant bronchiolitis obliterans syndrome is associated with bronchial epithelial to mesenchymal transition. Am J Transplant 9(4):727–733

    Article  CAS  PubMed  Google Scholar 

  • Holgate ST, Davies DE, Lackie PM, Wilson SJ, Puddicombe SM, Lordan JL (2000) Epithelial-mesenchymal interactions in the pathogenesis of asthma. J Allergy Clin Immunol 105(2 Pt 1):193–204

    CAS  PubMed  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    CAS  PubMed  Google Scholar 

  • Kasai H, Allen JT, Mason RM, Kamimura T, Zhang Z (2005) TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respir Res 6:56

    Article  PubMed  Google Scholar 

  • Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA 103:13180–13185

    Article  CAS  PubMed  Google Scholar 

  • Kociecka B, Surazynski A, Miltyk W, Palka J (2010) The effect of Telmisartan on collagen biosynthesis depends on the status of estrogen activation in breast cancer cells. Eur J Pharmacol 628(1–3):51–56

    Article  CAS  PubMed  Google Scholar 

  • Kuroishi S, Suda T, Fujisawa T, Ide K, Inui N, Nakamura Y, Nakamura H, Chida K (2009) Epithelial-mesenchymal transition induced by transforming growth factor-beta1 in mouse tracheal epithelial cells. Respirology 14(6):828–837

    Article  PubMed  Google Scholar 

  • Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K (2005) Interleukin-1β causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol 32:311–318

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Penland CM, Widdicombe JH, Wine JJ (1998) Evidence that Calu-3 human airway cells secrete bicarbonate. Am J Physiol 274(3 Pt 1):L450–L453

    CAS  PubMed  Google Scholar 

  • Liu X (2008) Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell Motil Cytoskeleton 65(12):935–944

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liang C, Liu X, Liao B, Pan X, Ren Y, Fan M, Li M, He Z, Wu J, Wu Z (2010) AGEs increased migration and inflammatory responses of adventitial fibroblasts via RAGE, MAPK and NF-kappaB pathways. Atherosclerosis 208(1):34–42

    Article  CAS  PubMed  Google Scholar 

  • Molina-Molina M, Serrano-Mollar A, Bulbena O, Fernandez-Zabalegui L, Closa D, Marin-Arguedas A, Torrego A, Mullol J, Picado C, Xaubet A (2006) Losartan attenuates bleomycin induced lung fibrosis by increasing prostaglandin E2 synthesis. Thorax 61(7):604–610

    Article  CAS  PubMed  Google Scholar 

  • Mulay SR, Gaikwad AB, Tikoo K (2010) Combination of aspirin with telmisartan suppress the augmented TGF-beta/smad signaling during the development of streptozotocin induced type I diabetic nephropathy. Chem Biol Interact 185(2):137–142

    Article  CAS  PubMed  Google Scholar 

  • Razzaque MS, Taguchi T (2003) Pulmonary fibrosis: cellular and molecular events. Pathol Int 53(3):133–145

    Article  CAS  PubMed  Google Scholar 

  • Rieder F, Fiocchi C (2009) Intestinal fibrosis in IBD–a dynamic, multifactorial process. Nat Rev Gastroenterol Hepatol 6(4):228–235

    Article  CAS  PubMed  Google Scholar 

  • Rizos CV, Elisaf MS, Liberopoulos EN (2009) Are the pleiotropic effects of telmisartan clinically relevant? Curr Pharm Des 15(24):2815–2832

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues-Díez R, Carvajal-González G, Sánchez-López E, Rodríguez-Vita J, Rodrigues Díez R, Selgas R, Ortiz A, Egido J, Mezzano S, Ruiz-Ortega M (2008) Pharmacological modulation of epithelial mesenchymal transition caused by angiotensin II. Role of ROCK and MAPK pathways. Pharm Res 25(10):2447–2461

    Article  PubMed  Google Scholar 

  • Sarrió D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J (2008) Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68(4):989–997

    Article  PubMed  Google Scholar 

  • Savagner P (2001) Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. Bioessays 23:912–923

    Article  CAS  PubMed  Google Scholar 

  • Selman M, Pardo A (2002) Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res 3:3

    Article  PubMed  Google Scholar 

  • Shen BQ, Finkbeiner WE, Wine JJ, Mrsny RJ, Widdicombe JH (1994) Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion. Am J Physiol 266(5 Pt 1):L493–L501

    CAS  PubMed  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Uhal BD, Kim JK, Li X, Molina-Molina M (2007) Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages. Curr Pharm Des 13(12):1247–1256

    Article  CAS  PubMed  Google Scholar 

  • Vallance BA, Gunawan MI, Hewlett B, Bercik P, Van Kampen C, Galeazzi F, Sime PJ, Gauldie J, Collins SM (2005) TGF-beta1 gene transfer to the mouse colon leads to intestinal fibrosis. Am J Physiol Gastrointest Liver Physiol 289(1):G116–G128

    Article  CAS  PubMed  Google Scholar 

  • Waseda Y, Yasui M, Nishizawa Y, Inuzuka K, Takato H, Ichikawa Y, Tagami A, Fujimura M, Nakao S (2008) Angiotensin II type 2 receptor antagonist reduces bleomycin-induced pulmonary fibrosis in mice. Respir Res 9:43

    Article  PubMed  Google Scholar 

  • Willis BC, Borok Z (2007) TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 293:L525–L534

    Article  CAS  PubMed  Google Scholar 

  • Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166:1321–1332

    CAS  PubMed  Google Scholar 

  • Willis BC, duBois RM, Borok Z (2006) Epithelial origin of myofibroblasts during fibrosis in the lung. Proc Am Thorac Soc 3:377–382

    Article  CAS  PubMed  Google Scholar 

  • Xu YD, Hua J, Mui A, O’Connor R, Grotendorst G, Khalil N (2003) Release of biologically active TGF-beta1 by alveolar epithelial cells results in pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 285(3):L527–L539

    CAS  PubMed  Google Scholar 

  • Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res 19(2):156–172

    Article  CAS  PubMed  Google Scholar 

  • Yao HW, Xie QM, Chen JQ, Deng YM, Tang HF (2004) TGF-beta1 induces alveolar epithelial to mesenchymal transition in vitro. Life Sci 76(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Yao HW, Zhu JP, Zhao MH, Lu Y (2006) Losartan attenuates bleomycin-induced pulmonary fibrosis in rats. Respiration 73(2):236–242

    CAS  PubMed  Google Scholar 

  • Yao Q, Ayala ER, Qian JQ, Stenvinkel P, Axelsson J, Lindholm B (2007) A combination of a PPAR-gamma agonist and an angiotensin II receptor blocker attenuates proinflammatory signaling and stimulates expression of Smad7 in human peritoneal mesothelial cells. Clin Nephrol 68(5):295–301

    CAS  PubMed  Google Scholar 

  • Yao Y, Zou R, Liu X, Jiang J, Huang Q, He Y, Li M, Wang S, Zhou J, Ma D, Xu G (2008) Telmisartan but not valsartan inhibits TGF-beta-mediated accumulation of extracellular matrix via activation of PPARgamma. J Huazhong Univ Sci Technolog Med Sci 28(5):543–548

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Zhang Z, Pan HY, Wang DX, Deng ZT, Ye XL (2009) TGF-beta1 induces human bronchial epithelial cell-to-mesenchymal transition in vitro. Lung 187(3):187–194

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Rogers AV, Burke-Gaffney A, Hellewell PG, Jeffery PK (1999) Cytokine-induced airway epithelial ICAM-1 upregulation: quantification by high-resolution scanning and transmission electron microscopy. Eur Respir J 13(6):1318–1328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Ehrhardt.

Additional information

S.T.B. is funded by an IRCSET Government of Ireland Postgraduate Scholarship in Science, Engineering and Technology. This work has been funded in part by a Strategic Research Cluster grant (07/SRC/B1154) under the National Development Plan co-funded by EU Structural Funds and Science Foundation Ireland (SFI). C. M. is a SFI Stokes Lecturer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, S.T., Medina, C. & Ehrhardt, C. Differential susceptibility to epithelial-mesenchymal transition (EMT) of alveolar, bronchial and intestinal epithelial cells in vitro and the effect of angiotensin II receptor inhibition. Cell Tissue Res 342, 39–51 (2010). https://doi.org/10.1007/s00441-010-1029-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-010-1029-x

Keywords

Navigation