Skip to main content
Log in

Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley

  • Mini Review
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Neuromuscular electrical stimulation (NMES) generates contractions by depolarising axons beneath the stimulating electrodes. The depolarisation of motor axons produces contractions by signals travelling from the stimulation location to the muscle (peripheral pathway), with no involvement of the central nervous system (CNS). The concomitant depolarisation of sensory axons sends a large volley into the CNS and this can contribute to contractions by signals travelling through the spinal cord (central pathway) which may have advantages when NMES is used to restore movement or reduce muscle atrophy. In addition, the electrically evoked sensory volley increases activity in CNS circuits that control movement and this can also enhance neuromuscular function after CNS damage. The first part of this review provides an overview of how peripheral and central pathways contribute to contractions evoked by NMES and describes how differences in NMES parameters affect the balance between transmission along these two pathways. The second part of this review describes how NMES location (i.e. over the nerve trunk or muscle belly) affects transmission along peripheral and central pathways and describes some implications for motor unit recruitment during NMES. The third part of this review summarises some of the effects that the electrically evoked sensory volley has on CNS circuits, and highlights the need to identify optimal stimulation parameters for eliciting plasticity in the CNS. A goal of this work is to identify the best way to utilize the electrically evoked sensory volley generated during NMES to exploit mechanisms inherent to the neuromuscular system and enhance neuromuscular function for rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams GR, Harris RT, Woodard D, Dudley GA (1993) Mapping of electrical muscle stimulation using MRI. J Appl Physiol 74:532–537

    PubMed  CAS  Google Scholar 

  • Adrian ED, Bronk DW (1929) The discharge of impulses in motor nerve fibres: Part II. The frequency of discharge in reflex and voluntary contractions. J Physiol 67:i3–i151

    PubMed  CAS  Google Scholar 

  • Baker LL, Wederich CL, McNeal DR, Newsam CJ, Waters RL (2000) Neuromuscular electrical stimulation: a pratical guide. Los Amigos Research and Educational Institute, Downey

  • Baldwin ER, Klakowicz PM, Collins DF (2006) Wide-pulse-width, high-frequency neuromuscular stimulation: implications for functional electrical stimulation. J Appl Physiol 101:228–240

    PubMed  Google Scholar 

  • Bawa P, Pang MY, Olesen KA, Calancie B (2006) Rotation of motoneurons during prolonged isometric contractions in humans. J Neurophysiol 96:1135–1140

    PubMed  Google Scholar 

  • Bergquist AJ, Clair JM, Collins DF (2011) Motor unit recruitment when neuromuscular electrical stimulation is applied over a nerve trunk compared to a muscle belly: triceps surae. J Appl Physiol 110:627–637

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Zijdewind I, Thomas CK (2000) Muscle fatigue induced by stimulation with and without doublets. Muscle Nerve 23:1348–1355

    PubMed  CAS  Google Scholar 

  • Binder-Macleod SA, Clamann HP (1989) Force output of cat motor units stimulated with trains of linearly varying frequency. J Neurophysiol 61:208–217

    PubMed  CAS  Google Scholar 

  • Binder-Macleod SA, Scott WB (2001) Comparison of fatigue produced by various electrical stimulation trains. Acta Physiol Scand 172:195–203

    PubMed  CAS  Google Scholar 

  • Blair EA, Erlanger J (1933) A comparison of the characteristics of axons through their individual electrical responses. Am J Physiol 106:524–564

    Google Scholar 

  • Blickenstorfer A, Kleiser R, Keller T, Keisker B, Meyer M, Riener R, Kollias S (2008) Cortical and subcortical correlates of functional electrical stimulation of wrist extensor and flexor muscles revealed by fMRI. Hum Brain Mapp 3:963–975

    Google Scholar 

  • Blouin JS, Walsh LD, Nickolls P, Gandevia SC (2009) High-frequency submaximal stimulation over muscle evokes centrally generated forces in human upper limb skeletal muscles. J Appl Physiol 106:370–377

    PubMed  Google Scholar 

  • Boerio D, Jubeau M, Zory R, Maffiuletti NA (2005) Central and peripheral fatigue after electrostimulation-induced resistance exercise. Med Sci Sports Exerc 37:973–978

    PubMed  Google Scholar 

  • Buchthal F, Schmalbruch H (1970) Contraction times of twitches evoked by H-reflexes. Acta Physiol Scand 80:378–382

    PubMed  CAS  Google Scholar 

  • Burke D, Schiller HH (1976) Discharge pattern of single motor units in the tonic vibration reflex of human triceps surae. J Neurol Neurosurg Psychiatry 39:729–741

    PubMed  CAS  Google Scholar 

  • Burke D, Gandevia SC, McKeon B (1983) The afferent volleys responsible for spinal proprioceptive reflexes in man. J Physiol 339:535–552

    PubMed  CAS  Google Scholar 

  • Burke D, Kiernan MC, Bostock H (2001) Excitability of human axons. Clin Neurophysiol 112:1575–1585

    PubMed  CAS  Google Scholar 

  • Burnham R, Martin T, Stein R, Bell G, MacLean I, Steadward R (1997) Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord 35:86–91

    PubMed  CAS  Google Scholar 

  • Clair JM, Anderson-Reid JM, Graham CM, Collins DF (2011) Post-activation depression and recovery of reflex transmission during repetitive electrical stimulation of the human tibial nerve. J Neurophysiol [Epub ahead of Print]

  • Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Collins DF (2007) Central contributions to contractions evoked by tetanic neuromuscular electrical stimulation. Exerc Sport Sci Rev 35:102–109

    PubMed  Google Scholar 

  • Collins DF, Burke D, Gandevia SC (2001) Large involuntary forces consistent with plateau-like behavior of human motoneurons. J Neurosci 21:4059–4065

    PubMed  CAS  Google Scholar 

  • Collins DF, Burke D, Gandevia SC (2002a) Sustained contractions produced by plateau-like behaviour in human motoneurones. J Physiol 538:289–301

    PubMed  CAS  Google Scholar 

  • Collins DF, Gorassini M, Bennett D, Burke D, Gandevia SC (2002b) Recent evidence for plateau potentials in human motoneurones. Adv Exp Med Biol 508:227–235

    PubMed  Google Scholar 

  • Conforto AB, Kaelin-Lang A, Cohen LG (2002) Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 51:122–125

    PubMed  Google Scholar 

  • Crone C, Nielsen J (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Exp Brain Res 78:28–32

    PubMed  CAS  Google Scholar 

  • Crone C, Nielsen J, Petersen N, Ballegaard M, Hultborn H (1994) Disynaptic reciprocal inhibition of ankle extensors in spastic patients. Brain 117(Pt 5):1161–1168

    PubMed  Google Scholar 

  • Dean JC, Yates LM, Collins DF (2007) Turning on the central contribution to contractions evoked by neuromuscular electrical stimulation. J Appl Physiol 1:170–176

    Google Scholar 

  • Deuchert M, Ruben J, Schwiemann J, Meyer R, Thees S, Krause T, Blankenburg F, Villringer K, Kurth R, Curio G, Villringer A (2002) Event-related fMRI of the somatosensory system using electrical finger stimulation. NeuroReport 13:365–369

    PubMed  Google Scholar 

  • Doherty TJ, Brown WF (1993) The estimated numbers and relative sizes of thenar motor units as selected by multiple point stimulation in young and older adults. Muscle Nerve 16:355–366

    PubMed  CAS  Google Scholar 

  • Dudley-Javoroski S, Shields RK (2008) Muscle and bone plasticity after spinal cord injury: review of adaptations to disuse and to electrical muscle stimulation. J Rehabil Res Dev 45:283–296

    Google Scholar 

  • Everaert DG, Thompson AK, Chong SL, Stein RB (2010) Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair 24:168–177

    PubMed  Google Scholar 

  • Feiereisen P, Duchateau J, Hainaut K (1997) Motor unit recruitment order during voluntary and electrically induced contractions in the tibialis anterior. Exp Brain Res 114:117–123

    PubMed  CAS  Google Scholar 

  • Field-Fote EC (2004) Electrical stimulation modifies spinal and cortical neural circuitry. Exerc Sport Sci Rev 32:155–160

    PubMed  Google Scholar 

  • Fraser C, Power M, Hamdy S, Rothwell J, Hobday D, Hollander I, Tyrell P, Hobson A, Williams S, Thompson D (2002) Driving plasticity in human adult motor cortex is associated with improved motor function after brain injury. Neuron 34:831–840

    PubMed  CAS  Google Scholar 

  • Frigon A, Thompson CK, Johnson MD, Manuel M, Hornby TG, Heckman CJ (2011) Extra forces evoked during electrical stimulation of the muscle or its nerve are generated and modulated by a length-dependent intrinsic property of muscle in humans and cats. J Neurosci 31:5579–5588

    PubMed  CAS  Google Scholar 

  • Gondin J, Giannesini B, Vilmen C, Dalmasso C, le Fur Y, Cozzone PJ, Bendahan D (2010) Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation. Muscle Nerve 41:667–678

    PubMed  Google Scholar 

  • Gondin J, Brocca L, Bellinzona E, D’Antona G, Maffiuletti NA, Miotti D, Pellegrino MA, Bottinelli R (2011) Neuromuscular electrical stimulation training induces atypical adaptations of the human skeletal muscle phenotype: a functional and proteomic analysis. J Appl Physiol 110:433–450

    PubMed  CAS  Google Scholar 

  • Gorman PH, Mortimer JT (1983) The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng 30:407–414

    PubMed  CAS  Google Scholar 

  • Gottlieb GL, Agarwal GC (1976) Extinction of the Hoffmann reflex by antidromic conduction. Electroencephalogr Clin Neurophysiol 41:19–24

    PubMed  CAS  Google Scholar 

  • Gregory CM, Bickel CS (2005) Recruitment patterns in human skeletal muscle during electrical stimulation. Phys Ther 85:358–364

    PubMed  Google Scholar 

  • Gregory CM, Dixon W, Bickel CS (2007) Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 35:504–509

    PubMed  Google Scholar 

  • Grill WM, Mortimer JT (1996) The effect of stimulus pulse duration on selectivity of neural stimulation. IEEE Trans Biomed Eng 43:161–166

    PubMed  Google Scholar 

  • Hagbarth KE, Eklund G (1966) Tonic vibration reflexes (TVR) in spasticity. Brain Res 2:201–203

    PubMed  CAS  Google Scholar 

  • Hamdy S, Rothwell JC, Aziz Q, Singh KD, Thompson DG (1998) Long-term reorganization of human motor cortex driven by short-term sensory stimulation. Nat Neurosci 1:64–68

    PubMed  CAS  Google Scholar 

  • Henneman E (1957) Relation between size of neurons and their susceptibility to discharge. Science 126:1345–1347

    PubMed  CAS  Google Scholar 

  • Hoffman LR, Field-Fote EC (2007) Cortical reorganization following bimanual training and somatosensory stimulation in cervical spinal cord injury: a case report. Phys Ther 87:208–223

    PubMed  Google Scholar 

  • Hortobagyi T, Scott K, Lambert J, Hamilton G, Tracy J (1999) Cross-education of muscle strength is greater with stimulated than voluntary contractions. Mot Control 3:205–219

    CAS  Google Scholar 

  • Hugon M (1973) Methodology of the Hoffmann Reflex in Man. New Dev Electromyogr Clin Neurophysiol 3:277–293

    Google Scholar 

  • Jacobs PL, Nash MS (2004) Exercise recommendations for individuals with spinal cord injury. Sports Med 34:727–751

    PubMed  Google Scholar 

  • Jubeau M, Gondin J, Martin A, Sartorio A, Maffiuletti NA (2007) Random motor unit activation by electrostimulation. Int J Sports Med 28:901–904

    PubMed  CAS  Google Scholar 

  • Jusic A, Baraba R, Bogunovic A (1995) H-reflex and F-wave potentials in leg and arm muscles. Electromyogr Clin Neurophysiol 35:471–478

    PubMed  CAS  Google Scholar 

  • Kasai T, Kawanishi M, Yahagi S (1992) The effects of wrist muscle vibration on human voluntary elbow flexion-extension movements. Exp Brain Res 90:217–220

    PubMed  CAS  Google Scholar 

  • Kesar T, Chou LW, Binder-Macleod SA (2007) Effects of stimulation frequency versus pulse duration modulation on muscle fatigue. J Electromyogr Kinesiol 4:662–671

    Google Scholar 

  • Khaslavskaia S, Ladouceur M, Sinkjaer T (2002) Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 145:309–315

    PubMed  Google Scholar 

  • Kido TA, Stein RB (2004) Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp Brain Res 159:491–500

    Google Scholar 

  • Kiernan MC, Mogyoros I, Burke D (1996) Differences in the recovery of excitability in sensory and motor axons of human median nerve. Brain 119:1099–1105

    PubMed  Google Scholar 

  • Kim CK, Bangsbo J, Strange S, Karpakka J, Saltin B (1995) Metabolic response and muscle glycogen depletion pattern during prolonged electrically induced dynamic exercise in man. Scand J Rehabil Med 27:51–58

    PubMed  CAS  Google Scholar 

  • Klakowicz PM, Baldwin ER, Collins DF (2006) Contribution of m-waves and h-reflexes to contractions evoked by tetanic nerve stimulation in humans. J Neurophysiol 96:1293–1302

    PubMed  Google Scholar 

  • Knaflitz M, Merletti R, de Luca CJ (1990) Inference of motor unit recruitment order in voluntary and electrically elicited contractions. J Appl Physiol 68:1657–1667

    PubMed  CAS  Google Scholar 

  • Knash ME, Kido A, Gorassini M, Chan KM, Stein RB (2003) Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Exp Brain Res 153:366–377

    PubMed  Google Scholar 

  • Knight CA, Kamen G (2005) Superficial motor units are larger than deeper motor units in human vastus lateralis muscle. Muscle Nerve 31:475–480

    PubMed  CAS  Google Scholar 

  • Lagerquist O, Collins DF (2008) Stimulus pulse-width influences H-reflex recruitment but not H(max)/M(max) ratio. Muscle Nerve 37:483–489

    PubMed  Google Scholar 

  • Lagerquist O, Collins DF (2010) Influence of stimulus pulse width on M-waves, H-reflexes, and torque during tetanic low-intensity neuromuscular stimulation. Muscle Nerve 42:886–893

    PubMed  Google Scholar 

  • Lagerquist O, Walsh LD, Blouin JS, Collins DF, Gandevia SC (2009) Effect of a peripheral nerve block on torque produced by repetitive electrical stimulation. J Appl Physiol 107:161–167

    PubMed  Google Scholar 

  • Lang AH, Vallbo ÅB (1967) Motoneuron activation by low intensity tetanic stimulation of muscle afferents in man. Exp Neurol 18:383–391

    PubMed  CAS  Google Scholar 

  • Lexell J, Henriksson-Larsen K, Sjostrom M (1983) Distribution of different fibre types in human skeletal muscles. 2. A study of cross-sections of whole m. vastus lateralis. Acta Physiol Scand 117:115–122

    PubMed  CAS  Google Scholar 

  • Liberson WT, Holmquest HJ, Scot D, Dow M (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101–105

    PubMed  CAS  Google Scholar 

  • Liepert J, Bauder H, Wolfgang HR, Miltner WH, Taub E, Weiller C (2000) Treatment-induced cortical reorganization after stroke in humans. Stroke 31:1210–1216

    PubMed  CAS  Google Scholar 

  • Maffiuletti NA (2010) Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol 110:223–234

    PubMed  Google Scholar 

  • Maffiuletti NA, Zory R, Miotti D, Pellegrino MA, Jubeau M, Bottinellu R (2006) Neuromuscular adaptations to electrostimulation resistance training. Am J Phys Med Rehabil 85:167–175

    PubMed  Google Scholar 

  • Magalhaes FH, Kohn AF (2010) Vibration-induced extra torque during electrically-evoked contractions of the human calf muscles. J Neuroeng Rehabil 7:26

    PubMed  Google Scholar 

  • Major LA, Jones KE (2005) Simulations of motor unit number estimation techniques. J Neural Eng 2:17–34

    PubMed  Google Scholar 

  • Mang CS, Lagerquist O, Collins DF (2010) Changes in corticospinal excitability evoked by common peroneal nerve stimulation depend on stimulation frequency. Exp Brain Res 203:11–20

    PubMed  CAS  Google Scholar 

  • Mang CS, Clair JM, Collins DF (2011) Neuromuscular electrical stimulation has a global effect on corticospinal excitability for leg muscles and a focused effect for hand muscles. Exp Brain Res 209:355–363

    PubMed  CAS  Google Scholar 

  • McKay D, Brooker R, Giacomin P, Ridding M, Miles T (2002a) Time course of induction of increased human motor cortex excitability by nerve stimulation. NeuroReport 13:1271–1273

    PubMed  Google Scholar 

  • McKay DR, Ridding MC, Thompson PD, Miles TS (2002b) Induction of persistent changes in the organisation of the human motor cortex. Exp Brain Res 143:342–349

    PubMed  Google Scholar 

  • Mesin L, Merlo E, Merletti R, Orizio C (2010) Investigation of motor unit recruitment during stimulated contractions of tibialis anterior muscle. J Electromyogr Kinesiol 20:580–589

    PubMed  CAS  Google Scholar 

  • Milner-Brown HS, Stein RB, Yemm R (1973) The orderly recruitment of human motor units during voluntary isometric contractions. J Physiol 230:359–370

    PubMed  CAS  Google Scholar 

  • Mogyoros I, Kiernan MC, Burke D (1996) Strength-duration properties of human peripheral nerve. Brain 119:439–447

    PubMed  Google Scholar 

  • Nielsen J, Kagamihara Y, Crone C, Hultborn H (1992) Central facilitation of Ia inhibition during tonic ankle dorsiflexion revealed after blockade of peripheral feedback. Exp Brain Res 88:651–656

    PubMed  CAS  Google Scholar 

  • Panizza M, Nilsson J, Hallett M (1989) Optimal stimulus duration for the H reflex. Muscle Nerve 12:576–579

    PubMed  CAS  Google Scholar 

  • Panizza M, Nilsson J, Roth BJ, Basser PJ, Hallett M (1992) Relevance of stimulus duration for activation of motor and sensory fibers: implications for the study of H-reflexes and magnetic stimulation. Electroencephalogr Clin Neurophysiol 85:22–29

    PubMed  CAS  Google Scholar 

  • Perez MA, Field-Fote EC, Floeter MK (2003) Patterned sensory stimulation induces plasticity in reciprocal Ia inhibition in humans. J Neurosci 23:2014–2018

    PubMed  CAS  Google Scholar 

  • Pierrot-Deseilligny E, Mazevet D (2000) The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Neurophysiol Clin 30:67–80

    PubMed  CAS  Google Scholar 

  • Pitcher JB, Ridding MC, Miles TS (2003) Frequency-dependent, bi-directional plasticity in motor cortex of human adults. Clin Neurophysiol 114:1265–1271

    PubMed  Google Scholar 

  • Place N, Casartelli N, Glatthorn JF, Maffiuletti NA (2010) Comparison of quadriceps inactivation between nerve and muscle stimulation. Muscle Nerve 42:894–900

    PubMed  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    PubMed  CAS  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112:1461–1469

    PubMed  CAS  Google Scholar 

  • Round JM, Barr FM, Moffat B, Jones DA (1993) Fibre areas and histochemical fibre types in the quadriceps muscle of paraplegic subjects. J Neurol Sci 116:207–211

    PubMed  CAS  Google Scholar 

  • Roy FD, Gorassini MA (2008) Peripheral sensory activation of cortical circuits in the leg motor cortex of man. J Physiol 17:4091–4105

    Google Scholar 

  • Schindler-Ivens S, Shields RK (2000) Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp Brain Res 133:233–241

    PubMed  CAS  Google Scholar 

  • Selkowitz DM (1985) Improvement in isometric strength of the quadriceps femoris muscle after training with electrical stimulation. Phys Ther 65:186–196

    PubMed  CAS  Google Scholar 

  • Sheffler LR, Chae J (2007) Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35:562–590

    PubMed  Google Scholar 

  • Shields RK (1995) Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle. J Neurophysiol 73:2195–2206

    PubMed  CAS  Google Scholar 

  • Shields RK (2002) Muscular, skeletal, and neural adaptations following spinal cord injury. J Orthop Sports Phys Ther 32:65–74

    PubMed  Google Scholar 

  • Solomonow M (1984) External control of the neuromuscular system. IEEE Trans Biomed Eng 31:752–763

    PubMed  CAS  Google Scholar 

  • Spiegel J, Tintera J, Gawehn J, Stoeter P, Treede RD (1999) Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 110:47–52

    PubMed  CAS  Google Scholar 

  • Stein RB, Gordon T, Jefferson J, Sharfenberger A, Yang JF, de Zepetnek JT, Belanger M (1992) Optimal stimulation of paralyzed muscle after human spinal cord injury. J Appl Physiol 72:1393–1400

    PubMed  CAS  Google Scholar 

  • Stein RB, Everaert DG, Thompson AK, Chong SL, Whittaker M, Robertson J, Kuether G (2010) Long-term therapeutic and orthotic effects of a foot drop stimulator on walking performance in progressive and nonprogressive neurological disorders. Neurorehabil Neural Repair 24:152–167

    PubMed  Google Scholar 

  • Stevens JE, Mizner RL, Snyder-Mackler L (2004) Neuromuscular electrical stimulation for quadriceps muscle strengthening after bilateral total knee arthroplasty: a case series. J Ortho Sports Phys Ther 34:21–29

    Google Scholar 

  • Stotz PJ, Bawa P (2001) Motor unit recruitment during lengthening contractions of human wrist flexors. Muscle Nerve 24:1535–1541

    PubMed  CAS  Google Scholar 

  • Theurel J, Lepers R, Pardon L, Maffiuletti NA (2007) Differences in cardiorespiratory and neuromuscular responses between voluntary and stimulated contractions of the quadriceps femoris muscle. Respir Physiol Neurobiol 157:341–347

    PubMed  Google Scholar 

  • Thomas CK, Nelson G, Than L, Zijdewind I (2002) Motor unit activation order during electrically evoked contractions of paralyzed or partially paralyzed muscles. Muscle Nerve 25:797–804

    PubMed  Google Scholar 

  • Thompson AK, Estabrooks KL, Chong S, Stein RB (2009) Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation. Neurorehabil Neural Repair 23:133–142

    PubMed  Google Scholar 

  • Trimble MH, Enoka RM (1991) Mechanisms underlying the training effects associated with neuromuscular electrical stimulation. Phys Ther 71:273–280

    PubMed  CAS  Google Scholar 

  • van Boxtel A (1986) Differential effects of low-frequency depression, vibration-induced inhibition, and posttetanic potentiation on H-reflexes and tendon jerks in the human soleus muscle. J Neurophysiol 55:551–568

    PubMed  Google Scholar 

  • Vanderthommen M, Depresseux JC, Dauchat L, Degueldre C, Croisier JL, Crielaard JM (2000) Spatial distribution of blood flow in electrically stimulated human muscle: a positron emission tomography study. Muscle Nerve 23:482–489

    PubMed  CAS  Google Scholar 

  • Vanderthommen M, Duteil S, Wary C, Raynaud JS, Leroy-Willig A, Crielaard JM, Carlier PG (2003) A comparision of voluntary and electrically induced contractions by interleaved 1H- and 31P-NMRS in humans. J Appl Physiol 94:1012–1024

    PubMed  CAS  Google Scholar 

  • Veale JL, Mark RF, Rees S (1973) Differential sensitivity of motor and sensory fibres in human ulnar nerve. J Neurol Neurosurg Psychiatry 36:75–86

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Collins.

Additional information

Communicated by Roberto Bottinelli.

This article is published as part of the Special Issue Cluster on the XVIII Congress of the International Society of Electrophysiology and Kinesiology (ISEK 2010) that took place in Aalborg, Denmark on 16–19 June 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergquist, A.J., Clair, J.M., Lagerquist, O. et al. Neuromuscular electrical stimulation: implications of the electrically evoked sensory volley. Eur J Appl Physiol 111, 2409–2426 (2011). https://doi.org/10.1007/s00421-011-2087-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-011-2087-9

Keywords

Navigation