Skip to main content
Log in

Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems

  • Chest
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To describe our initial experience with percutaneous transthoracic biopsy (PCNB) of lung nodules using C-arm cone-beam CT (CBCT).

Materials

Seventy-one consecutive patients with lung nodules of 30 mm or smaller underwent CBCT-guided PCNB using a coaxial cutting needle. We evaluated the procedure time, coaxial introducer dwell time, the numbers of pleural passages, coaxial introducer repositionings and CT acquisitions, as well as the technical success rate and radiation doses. Diagnostic accuracy, sensitivity, specificity and incidence of complications were also evaluated.

Results

PCNB was performed for 71 nodules: 63 solid, 6 part-solid and 2 ground-glass nodules. The procedure time, coaxial introducer dwell time, numbers of pleural passages, coaxial introducer repositionings and CT acquisitions were 17.9 ± 5.9 min, 8.7 ± 3.8 min, 1.1 ± 0.4, 0.2 ± 0.5 and 2.9 ± 0.7, respectively. The technical success rate was 100% and the radiation dose was 272 ± 116 mGy. Thirty-six nodules (50.7%) were diagnosed as malignant, 25 (35.2%) as benign and 10 (14.1%) as indeterminate. Diagnostic accuracy, sensitivity, specificity and incidence of complications were 98.4%, 97%, 100% and 38%, respectively. Complications included pneumothorax in 18 patients (25.4%), haemoptysis in 10 (14.1%) and chest pain in one (1.4%).

Conclusion

Under CBCT guidance, PCNB of lung nodules can be performed accurately, providing both real-time fluoroscopic guidance and CT imaging capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ohno Y, Hatabu H, Takenaka D et al (2003) CT-guided transthoracic needle aspiration biopsy of small (<= 20 mm) solitary pulmonary nodules. AJR Am J Roentgenol 180:1665–1669

    PubMed  Google Scholar 

  2. Gupta S, Krishnamurthy S, Broemeling LD et al (2005) Small (<=2-cm) subpleural pulmonary lesions: short- versus long-needle-path CT-guided biopsy—comparison of diagnostic yields and complications. Radiology 234:631–637

    Article  PubMed  Google Scholar 

  3. Frank K, Wacker BM (2009) CT- and MR-guided interventions in radiology. In: Wacker FK, Meyer B (eds) Interventions using C-arm computed tomography. Springer, Heidelberg, pp 370–381

    Google Scholar 

  4. Carlson SK, Felmlee JP, Bender CE et al (2005) CT fluoroscopy-guided biopsy of the lung or upper abdomen with a breath-hold monitoring and feedback system: a prospective randomized controlled clinical trial. Radiology 237:701–708

    Article  PubMed  Google Scholar 

  5. Yankelevitz DF, Vazquez M, Henschke CI (2000) Special techniques in transthoracic needle biopsy of pulmonary nodules. Radiol Clin North Am 38:267–279

    Article  CAS  PubMed  Google Scholar 

  6. Gupta R, Cheung AC, Bartling SH et al (2008) Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28:2009–2022

    Article  PubMed  Google Scholar 

  7. Rafferty MA, Siewerdsen JH, Chan Y et al (2005) Investigation of C-arm cone-beam CT-guided surgery of the frontal recess. Laryngoscope 115:2138–2143

    Article  CAS  PubMed  Google Scholar 

  8. Reichardt B, Sarwar A, Bartling SH et al (2008) Musculoskeletal applications of flat-panel volume CT. Skeletal Radiol 37:1069–1076

    Article  PubMed  Google Scholar 

  9. Hirota S, Nakao N, Yamamoto S et al (2006) Cone-beam CT with flat-panel-detector digital angiography system: early experience in abdominal interventional procedures. Cardiovasc Intervent Radiol 29:1034–1038

    Article  PubMed  Google Scholar 

  10. Kim HC, Chung JW, Park JH et al (2009) Transcatheter arterial chemoembolization for hepatocellular carcinoma: prospective assessment of the right inferior phrenic artery with C-arm CT. J Vasc Interv Radiol 20:888–895

    Article  PubMed  Google Scholar 

  11. Wallace MJ, Kuo MD, Glaiberman C et al (2008) Three-dimensional C-arm cone-beam CT: applications in the interventional suite. J Vasc Interv Radiol 19:799–813

    Article  PubMed  Google Scholar 

  12. Carlson SK, Bender CE, Classic KL et al (2001) Benefits and safety of CT fluoroscopy in interventional radiologic procedures. Radiology 219:515–520

    CAS  PubMed  Google Scholar 

  13. Daly B, Templeton PA (1999) Real-time CT fluoroscopy: evolution of an interventional tool. Radiology 211:309–315

    CAS  PubMed  Google Scholar 

  14. Ko JP, Shepard J-AO, Drucker EA et al (2001) Factors influencing pneumothorax rate at lung biopsy: are dwell time and angle of pleural puncture contributing factors? Radiology 218:491–496

    CAS  PubMed  Google Scholar 

  15. Miller KS, Fish GB, Stanley JH et al (1988) Prediction of pneumothorax rate in percutaneous needle aspiration of the lung. Chest 93:742–745

    Article  CAS  PubMed  Google Scholar 

  16. Kazerooni EA, Lim FT, Mikhail A et al (1996) Risk of pneumothorax in CT-guided transthoracic needle aspiration biopsy of the lung. Radiology 198:371–375

    CAS  PubMed  Google Scholar 

  17. Laurent F, Latrabe V, Vergier B et al (2000) CT-guided transthoracic needle biopsy of pulmonary nodules smaller than 20 mm: results with an automated 20-gauge coaxial cutting needle. Clin Radiol 55:281–287

    Article  CAS  PubMed  Google Scholar 

  18. Tsukada H, Satou T, Iwashima A et al (2000) Diagnostic accuracy of CT-guided automated needle biopsy of lung nodules. AJR Am J Roentgenol 175:239–243

    CAS  PubMed  Google Scholar 

  19. Moore EH (1998) Technical aspects of needle aspiration lung biopsy: a personal perspective. Radiology 208:303–318

    CAS  PubMed  Google Scholar 

  20. Kato R, Katada K, Anno H et al (1996) Radiation dosimetry at CT fluoroscopy: physician’s hand dose and development of needle holders. Radiology 201:576–578

    CAS  PubMed  Google Scholar 

  21. Rivera MP, Mehta AC (2007) Initial diagnosis of lung cancer. Chest 132:131S–148S

    Article  PubMed  Google Scholar 

  22. Scarfe WC, Farman AG (2008) What is cone-beam CT and how does it work? Dent Clin North Am 52:707–730 v

    Article  PubMed  Google Scholar 

  23. Miracle AC, Mukherji SK (2009) Conebeam CT of the head and neck, part 1: physical principles. AJNR Am J Neuroradiol 30:1088–1095

    Article  CAS  PubMed  Google Scholar 

  24. Yeow K-M, Su IH, Pan K-T et al (2004) Risk factors of pneumothorax and bleeding. Chest 126:748–754

    Article  PubMed  Google Scholar 

  25. Swischuk JL, Castaneda F, Patel JC et al (1998) Percutaneous transthoracic needle biopsy of the lung: review of 612 lesions. J Vasc Interv Radiol 9:347–352

    Article  CAS  PubMed  Google Scholar 

  26. Geraghty PR, Kee ST, McFarlane G et al (2003) CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology 229:475–481

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A070001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Min Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, K.N., Park, C.M., Goo, J.M. et al. Initial experience of percutaneous transthoracic needle biopsy of lung nodules using C-arm cone-beam CT systems. Eur Radiol 20, 2108–2115 (2010). https://doi.org/10.1007/s00330-010-1783-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-010-1783-x

Keywords

Navigation