Skip to main content
Log in

Process analysis using ion mobility spectrometry

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ion mobility spectrometry, originally used to detect chemical warfare agents, explosives and illegal drugs, is now frequently applied in the field of process analytics. The method combines both high sensitivity (detection limits down to the ng to pg per liter and ppbv/pptv ranges) and relatively low technical expenditure with a high-speed data acquisition. In this paper, the working principles of IMS are summarized with respect to the advantages and disadvantages of the technique. Different ionization techniques, sample introduction methods and preseparation methods are considered. Proven applications of different types of ion mobility spectrometer (IMS) used at ISAS will be discussed in detail: monitoring of gas insulated substations, contamination in water, odoration of natural gas, human breath composition and metabolites of bacteria. The example applications discussed relate to purity (gas insulated substations), ecology (contamination of water resources), plants and person safety (odoration of natural gas), food quality control (molds and bacteria) and human health (breath analysis).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Baumbach JI, Eiceman GA (1999) Appl Spectrosc 53:338A–355A

    Article  PubMed  CAS  Google Scholar 

  2. Eiceman GA, Karpas Z (1994) Ion mobility spectrometry. CRC, Boca Raton, FL, pp 1–228

  3. Hill HH Jr, Siems WF, St Louis RH, McMinn DG (1990) Anal Chem 62:1201A–1209A

    Article  PubMed  CAS  Google Scholar 

  4. Roehl RE (1991) Appl Spectrosc Rev 26:1–57

    CAS  Google Scholar 

  5. Baumbach JI, Schmidt H, Sielemann S, Pilzecker PJ (2004) Process Anal Chem 8:1–20

    Google Scholar 

  6. Vautz W, Sielemann S, Baumbach JI (2004) Int J Ion Mobility Spectrom 7:18–23

    Google Scholar 

  7. Vautz W, Sielemann S, Uhde E, Baumbach JI (2004) Int J Ion Mobility Spectrom 7:30–34

    Google Scholar 

  8. Vautz W, Sielemann S, Baumbach JI (2003) Int J Ion Mobility Spectrom 6:21–29

    CAS  Google Scholar 

  9. Ruzsanyi V, Baumbach JI, Eiceman GA (2003) Int J Ion Mobility Spectrom 6:53–57

    CAS  Google Scholar 

  10. Li F, Eiceman GA, Ruzsanyi V, Baumbach JI (2003) Int J Ion Mobility Spectrom 6:64–66

    Google Scholar 

  11. Li F, Xie Y, Schmidt H, Sielemann S, Baumbach JI (2002) Spectrosc Spectral Anal (China) 372:606–610

    Google Scholar 

  12. Ruzsanyi V, Sielemann S, Baumbach JI (2002) Int J Ion Mobility Spectrom 5:45–48

    CAS  Google Scholar 

  13. Xie Z, Sielemann S, Schmidt H, Li F, Baumbach JI (2002) Anal Bioanal Chem 372:606–610

    Article  PubMed  CAS  Google Scholar 

  14. Soppart O, Pilzecker P, Baumbach JI, Klockow D, Trindade E (2000) IEEE T Dielect El In 7:229–233

    Article  CAS  Google Scholar 

  15. Soppart O, Baumbach JI, Trindade E, Alberti SM, Moraes e Silva JM, Klockow D, Peier D (2000) Eur T Electr Power 10:179–184

    Article  Google Scholar 

  16. Baumbach JI, Pilzecker P, Trindade E (1999) Int J Ion Mobility Spectrom 2:35–39

    CAS  Google Scholar 

  17. Xie Z, Sielemann S, Schmidt H, Baumbach JI (2001) Int J Ion Mobility Spectrom 4:77–83

    CAS  Google Scholar 

  18. Lubman DM (1988) Ion mobility spectrometry with laser-produced ions. In: Report ARO–2244416–CH. Gov Rep Announce Index (U.S.) 88(24) Abstr No 860641

  19. Spangler GE (2000) Field Anal Chem Tech 4:255–267

    Article  CAS  Google Scholar 

  20. Wu C, Hill HH Jr, Gamerdinger AP (1998) Field Anal Chem Technol 2:155–161

    Article  CAS  Google Scholar 

  21. Spangler EG (2000) Field Anal Chem Technol 4:255–267

    Article  CAS  Google Scholar 

  22. Bell SE, Ewing RG, Eiceman GA, Karpas ZJ (1994) Am Soc Mass Spectrom 5:177–185

    Article  CAS  Google Scholar 

  23. Wu C, Hill HH, Rasulev UK, Nazarov EG (1999) Anal Chem 71:273–278

    Article  CAS  Google Scholar 

  24. Schmidt H, Baumbach JI, Pilzecker P, Klockow D (2000) Int J Ion Mobility Spectrom 3:8–14

    CAS  Google Scholar 

  25. Tabrizchi M, Khayamian T, Taj N (2000) Rev Sci Inst 71:2321–2328

    Article  ADS  CAS  Google Scholar 

  26. Borsdorf H, Rudolph M (2000) Int J Ion Mobility Spectrom 3:1–7

    CAS  Google Scholar 

  27. Borsdorf H, Schelhorn H, Rudolph M, Flachowsky J, Stach J (1999) Int J Ion Mobility Spectrom 2:40–44

    CAS  Google Scholar 

  28. Teepe M, Kang WJ, Neyer A, Baumbach JI, Schmidt H (2001) Int J Ion Mobility Spectrom 4(2):173–176

    Google Scholar 

  29. Leonhardt JW, Rohrbeck W, Bensch H (2000) Int J Ion Mobility Spectrom 3:43–49

    CAS  Google Scholar 

  30. Leonhardt JWJ (1995) Radioanal Nucl Chem 206:333–339

    Article  Google Scholar 

  31. Leonhardt JW, Rohrbeck W, Bensch H (1995) In: Proc Fourth Int Workshop on Ion Mobility Spectrometry, 6–9 August 1995, Cambridge, UK

  32. Sielemann S, Baumbach JI, Pilzecker P, Walendzik G (1999) Int J Ion Mobility Spectrom 2:15–21

    CAS  Google Scholar 

  33. Sielemann S, Baumbach JI, Schmidt H, Pilzecker P (2001) Anal Chim Acta 431:293–301

    Article  CAS  Google Scholar 

  34. Kang WJ, Teepe M, Neyer A, Baumbach JI, Schmidt H, Sielemann S (2001) Int J Mobility Spectrom 4(2):108–111

    Google Scholar 

  35. Sielemann S, Li F, Schmidt H, Baumbach JI (2001) Int J Ion Mobility Spectrom 4(2):81–84

    Google Scholar 

  36. Vautz W, Ruzsanyi V, Sielemann S, Baumbach JI (2004) Int J Ion Mobility Spectrom 7:3–8

    CAS  Google Scholar 

  37. Leasure CS, Fleischer ME, Anderson GK, Eiceman GA (1986) Anal Chem 58:2142–2147

    Article  CAS  Google Scholar 

  38. Shumate CB, Hill HH Jr (1989) Anal Chem 61:601–606

    Article  PubMed  CAS  Google Scholar 

  39. Baumbach JI, Pilzecker P, Trindade E (1999) Int J Ion Mobility Spectrom 2:35–39

    CAS  Google Scholar 

  40. Borsdorf H, Schelhorn H, Flachowski J, Döring HR, Stach J (2000) Anal Chem Acta 403:235–242

    Article  CAS  Google Scholar 

  41. Xu J, Whitten WB, Lewis TA, Ramsey JM (2001) Int J Ion Mobility Spectrom 4(1):3–6

    CAS  Google Scholar 

  42. Borsdorf H, Schelhorn H, Flachowsky J, Döring H, Stach J (1999) Int J Ion Mobility Spectrom 2:9–14

    CAS  Google Scholar 

  43. Tabrizchi M, Khayamian T (2001) Int J Ion Mobility Spectrom 4:52–56

    CAS  Google Scholar 

  44. Tabrizchi M, Abedi A (2001) Int J Ion Mobility Spectrom 4(2):129–131

    Google Scholar 

  45. Tabrizchi M, Abedi A (2002) Int J Mass Spectrom 218:75–85

    Article  CAS  Google Scholar 

  46. Hill CA, Thomas CLP (2003) Analyst 128:55–60

    Article  PubMed  CAS  Google Scholar 

  47. Hill C, Thomas P (2002) Int J Ion Mobility Spectrom 5:155–160

    CAS  Google Scholar 

  48. Baumbach JI, Soppart O, Pilzecker P, Trindade E, Klockow D (1999) Elektrizitätswirtschaft 3:37–42

    Google Scholar 

  49. Pilzecker P, Baumbach JI, Kurte R, Heise HM (2002) Int J Ion Mobility Spectrom 5:132–137

    CAS  Google Scholar 

  50. Walendzik G (2004) Dissertation. Universität Dortmund, Germany

  51. Jauzein M, Baumbach JI, Gutierrez JI, Sardin M (1996) Measurement and modelling of VOC mobility in soils and groundwaters for environmental risk assessment. In: Barton J, Biletewski B, Büsing J, Jackson DV, Jager J, Jauzein M, Kresja P, Ujma KH (eds) Recycling technologies, treatment of waste and contaminated sites (DGXII/D-1). European Commission, Brussels, 15:361–371

  52. Walendzik G, Baumbach JI, Sielemann S, Klockow D (1998) Proc Sixth Int Workshop on Ion Mobility Spectrometry, 10–14 August 1997, Bastei, Germany, p 326

  53. Sielemann S, Teepe M, Vautz W, Baumbach JI (2004) GWF—Gas—Erdgas 145:642–646

    CAS  Google Scholar 

  54. Baumbach JI (2001) Uni-Report Universität Dortmund 33:44–48

    Google Scholar 

  55. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) Metabolites in human breath: ion mobility spectrometers as diagnostic tools for lung diseases. In: Amann A, Smith D (eds) Breath gas analysis for medical diagnostics. World Scientific, Singapore

    Google Scholar 

  56. Baumbach JI, Vautz W, Ruzsanyi V, Freitag L (2005) Metabolites in human breath: ion mobility spectrometers as diagnostic tools for lung diseases. In: Knäblein J (ed) Modern biopharmaceuticals. Wiley–VCH, Weinheim

    Google Scholar 

  57. Ruzsanyi V (2005) Dissertation, Universität Dortmund, Germany

Download references

Acknowledgements

Major contributions to common experimental and laboratory work were made by Dr. Li Fang, Peter Pilzecker, Dr. Vera Ruzsanyi, Dr. Stefanie Sielemann, Dr. Gudrun Walendzik, Dr. Wolfgang Vautz and should be mentioned in gratitude. Some of the results discussed above were published partly in the PhD thesis of Dr. Gudrun Walendzik (water contamination) and Dr. Vera Ruzsanyi (breath analysis and metabolites of bacteria), and so they deserve hearty thanks. The co-operation and common experimental work done with G.A.S. Gesellschaft für analytische Sensorsysteme mbH, Dortmund, Germany, in the fields of applications of IMS to gas insulated substations and supervision of the odoration level of natural gas are gratefully acknowledged. Lucia Seifert, Stefanie Güssgen and the mechanical department of the ISAS headed by Hans–Georg Krebs made essential contributions to the results obtained. The co-operation, helpful discussions and support obtained at the Hemer lung hospital, especially from Dr. Lutz Freitag, Dr. Michael Westphal and Dr. Patrick Litterst, should also be mentioned. Additionally, detailed discussions on fundamental questions and application problems with Prof. Dr. Gary Eiceman, New Mexico State University, are gratefully acknowledged. The financial support of the Bundesministerium für Bildung und Forschung and the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and the G.A.S. Gesellschaft für analytische Sensorsysteme mbH, Dortmund, is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Baumbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumbach, J.I. Process analysis using ion mobility spectrometry. Anal Bioanal Chem 384, 1059–1070 (2006). https://doi.org/10.1007/s00216-005-3397-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3397-8

Keywords

Navigation