Skip to main content
Log in

Transcriptional regulation of the acetyl-CoA synthetase gene acsA in Pseudomonas aeruginosa

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Pseudomonas aeruginosa ATCC 17933 is able to oxidize ethanol to acetate under aerobic conditions. The P. aeruginosa acetyl-CoA synthetase (ACS) gene acsA was previously identified, and the ACS enzyme described to be required for growth on ethanol as the sole source of carbon and energy. Here, we investigated the transcriptional regulation of the acsA gene using an acsA::lacZ fusion. Transcription of acsA was regulated by the carbon source, and expression was maximal on ethanol, acetate and propionate. In addition, the induction depended on the response regulator ErdR, which also regulates hierarchically arranged genes for ethanol oxidation. Transcription of the acsA gene was repressed by addition of succinate to an ethanol-containing medium. This repression required Crc, the product of the catabolite repression control gene crc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Abbreviations

ACS:

Acetyl-CoA synthetase

crc:

Catabolite repression control

ACK:

Acetate kinase

PTA:

Phosphotransacetylase

References

  • Arndt A, Eikmanns BJ (2007) The alcohol dehydrogenase gene adhA in Corynebacterium glutamicum is subjected to carbon catabolite repression. J Bacteriol 189:7408–7416

    Article  CAS  PubMed  Google Scholar 

  • Arndt A, Auchter M, Ishige T, Wendisch VF, Eikmanns BJ (2008) Ethanol catabolism in Corynebacterium glutamicum. J Mol Microbiol Biotechnol 15:222–233

    Article  CAS  PubMed  Google Scholar 

  • Brown TDK, Jones-Mortimer MC, Kornberg HL (1977) The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J Gen Microbiol 102:327–336

    CAS  PubMed  Google Scholar 

  • Cetin ET, Töreci KI, Ang Ö (1965) Encapsulated Pseudomonas aeruginosa (Pseudomonas mucosus) strains. J Bacteriol 89:1432–1433

    CAS  PubMed  Google Scholar 

  • Collier DN, Hager PW, Phibbs PV Jr (1996) Catabolite repression control in the Pseudomonads. Res Microbiol 147:551–561

    Article  CAS  PubMed  Google Scholar 

  • Eschbach M, Schreiber K, Trunk K, Buer J, Jahn D, Schobert M (2004) Long-term anaerobic survival of the opportunistic pathogen Pseudomonas aeruginosa via pyruvate fermentation. J Bacteriol 186:4596–4604

    Article  CAS  PubMed  Google Scholar 

  • Farinha MA, Kropinski AM (1990) Construction of broad-host-range plasmid vectors for easy visible selection and analysis of promoters. J Bacteriol 172:3496–3499

    CAS  PubMed  Google Scholar 

  • Gerstmeir R, Wendisch VF, Schnicke S, Ruan H, Farwick M, Reinscheid D, Eikmanns BJ (2003) Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122

    Article  CAS  PubMed  Google Scholar 

  • Gliese N, Khodaverdi V, Schobert M, Görisch H (2004) AgmR controls transcription of a regulon with several operons essential for ethanol oxidation in Pseudomonas aeruginosa ATCC 17933. Microbiology 150:1851–1857

    Article  CAS  PubMed  Google Scholar 

  • Görisch H (2003) The ethanol oxidation system and its regulation in Pseudomonas aeruginosa. Biochem Biophys Acta 1647:98–102

    PubMed  Google Scholar 

  • Görisch H, Keitel A, Diehl A, Knaute T, Dauter Z, Höhne W (2000) Structural properties of homodimeric quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. In: Iriarte A, Kagan HM, Martinez-Carrion M (eds) Biochemistry and molecular biology of vitamin B6 and PQQ-dependent proteins. Birkhäuser Verlag, Basel, pp 55–60

    Google Scholar 

  • Grundy F, Waters DA, Allen SH, Henkin TM (1993) Regulation of the Bacillus subtilis acetate kinase gene by CcpA. J Bacteriol 175:7348–7355

    CAS  PubMed  Google Scholar 

  • Grundy F, Turinsky AJ, Henkin TM (1994) Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by CcpA. J Bacteriol 176:4527–4533

    CAS  PubMed  Google Scholar 

  • Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  • Hoang TT, Karkhoff-Schweizer RR, Kutchma AJ, Schweizer HP (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86

    Article  CAS  PubMed  Google Scholar 

  • Kretzschmar U, Schobert M, Görisch H (2001) The Pseudomonas aeruginosa acsA gene, encoding an acetyl-CoA synthetase, is essential for growth on ethanol. Microbiology 147:2671–2677

    CAS  PubMed  Google Scholar 

  • Kretzschmar U, Khodaverdi V, Jeoung JH, Görisch H (2008) Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa. Arch Microbiol 190:151–158

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Beatty CM, Browning DF, Busby SJW, Simel EJ, Hovel-Miner G, Wolfe AJ (2000) Regulation of acetyl coenzyme A synthetase in Escherichia coli. J Bacteriol 182:4173–4179

    Article  CAS  PubMed  Google Scholar 

  • MacGregor C, Arora SK, Hager PW, Dail MB, Phibbs PV Jr (1996) The nucleotide sequence of the Pseudomonas aeruginosa pyre-crc-rph region and the purification of the crc gene product. J Bacteriol 178:5627–5635

    CAS  PubMed  Google Scholar 

  • Mern DS, Ha SW, Khodaverdi V, Gliese N, Görisch H (2010) A complex regulatory network controls aerobic oxidation in Pseudomonas aeruginosa: indication of four levels of sensor kinases and response regulators. Microbiology. doi:10.1099/mic.0.032847-0

  • Miller JM (1992) A short course in bacterial genetics, a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Rupp M, Görisch H (1988) Purification, crystallization and characterization of quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa. Biol Chem Hoppe Seyler 369:431–439

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Schobert M, Görisch H (1999) Cytochrome c550 is an essential component of the quinoprotein ethanol oxidation system in Pseudomonas aeruginosa: cloning and sequencing of the genes encoding cytochrome c550 and an adjacent acetaldehyde dehydrogenase. Microbiology 145:471–481

    Article  CAS  PubMed  Google Scholar 

  • Schobert M, Görisch H (2001) A soluble two-component regulatory system controls expression of quinoprotein ethanol dehydrogenase (QEDH) but not expression of cytochrome c550 of the ethanol-oxidation system in Pseudomonas aeruginosa. Microbiology 147:363–372

    CAS  PubMed  Google Scholar 

  • Schweizer HP, Klassen TR, Hoang T (1996) Improved methods for gene analysis in Pseudomonas. In: Nakazawa T, Furukawa K, Haas D, Silver S (eds) Molecular biology of Pseudomonads. American Society for Microbiology, Washington, DC, pp 229–237

    Google Scholar 

  • Stover CK, Pham XQ, Erwin AL et al (2000) Complete genome of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964

    Article  CAS  PubMed  Google Scholar 

  • Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69:12–50

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Adrian.

Additional information

Communicated by Timothy Donohue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretzschmar, U., Khodaverdi, V. & Adrian, L. Transcriptional regulation of the acetyl-CoA synthetase gene acsA in Pseudomonas aeruginosa . Arch Microbiol 192, 685–690 (2010). https://doi.org/10.1007/s00203-010-0593-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0593-5

Keywords

Navigation