Skip to main content

Advertisement

Log in

Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography

  • Physiological and Technical Notes
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To present a novel algorithm for estimating recruitable alveolar collapse and hyperdistension based on electrical impedance tomography (EIT) during a decremental positive end-expiratory pressure (PEEP) titration.

Design

Technical note with illustrative case reports.

Setting

Respiratory intensive care unit.

Patient

Patients with acute respiratory distress syndrome.

Interventions

Lung recruitment and PEEP titration maneuver.

Measurements and results

Simultaneous acquisition of EIT and X-ray computerized tomography (CT) data. We found good agreement (in terms of amount and spatial location) between the collapse estimated by EIT and CT for all levels of PEEP. The optimal PEEP values detected by EIT for patients 1 and 2 (keeping lung collapse <10%) were 19 and 17 cmH2O, respectively. Although pointing to the same non-dependent lung regions, EIT estimates of hyperdistension represent the functional deterioration of lung units, instead of their anatomical changes, and could not be compared directly with static CT estimates for hyperinflation.

Conclusions

We described an EIT-based method for estimating recruitable alveolar collapse at the bedside, pointing out its regional distribution. Additionally, we proposed a measure of lung hyperdistension based on regional lung mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Tremblay LN, Slutsky AS (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110:482–488

    PubMed  CAS  Google Scholar 

  2. Plötz FB, Slutsky AS, van Vught AJ, Heijnen CJ (2004) Ventilator-induced lung injury and multiple system organ failure: a critical review of facts and hypotheses. Intensive Care Med 30:1865–1872

    Article  PubMed  Google Scholar 

  3. ARDSNet (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The acute respiratory distress syndrome network. N Engl J Med 342:1301–1308

    Article  Google Scholar 

  4. Amato MBP, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    Article  PubMed  CAS  Google Scholar 

  5. Villar J, Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318

    Article  PubMed  Google Scholar 

  6. Ranieri VM, Suter PM, Tortorella C, De Tullio R, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    Article  PubMed  CAS  Google Scholar 

  7. Suarez-Sipmann F, Böhm SH, Tusman G, Pesch T, Thamm O, Reissmann H, Reske A, Magnusson A, Hedenstierna G (2007) Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 35:214–221

    Article  PubMed  Google Scholar 

  8. Borges JB, Carvalho CRR, Amato MBP (2006) Lung recruitment in patients with ards. N Engl J Med 355:319–320 (author reply 321–322)

    Article  PubMed  CAS  Google Scholar 

  9. Borges JB, Okamoto VN, Matos GFJ, Caramez MPR, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CSV, Carvalho CRR, Amato MBP (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174:268–278

    Article  PubMed  Google Scholar 

  10. Terragni PP, Rosboch G, Tealdi A, Corno E, Menaldo E, Davini O, Gandini G, Herrmann P, Mascia L, Quintel M, Slutsky AS, Gattinoni L, Ranieri VM (2007) Tidal hyperinflation during low tidal volume ventilation in acute respiratory distress syndrome. Am J Respir Crit Care Med 175:160–166

    Article  PubMed  CAS  Google Scholar 

  11. Grasso S, Stripoli T, De Michele M, Bruno F, Moschetta M, Angelelli G, Munno I, Ruggiero V, Anaclerio R, Cafarelli A, Driessen B, Fiore T (2007) Ardsnet ventilatory protocol and alveolar hyperinflation: role of positive end-expiratory pressure. Am J Respir Crit Care Med 176:761–767

    Article  PubMed  Google Scholar 

  12. Victorino JA, Borges JB, Okamoto VN, Matos GFJ, Tucci MR, Caramez MPR, Tanaka H, Sipmann FS, Santos DCB, Barbas CSV, Carvalho CRR, Amato MBP (2004) Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am J Respir Crit Care Med 169:791–800

    Article  PubMed  Google Scholar 

  13. Frerichs I, Hinz J, Herrmann P, Weisser G, Hahn G, Dudykevych T, Quintel M, Hellige G (2002) Detection of local lung air content by electrical impedance tomography compared with electron beam ct. J Appl Physiol 93:660–666

    PubMed  Google Scholar 

  14. Frerichs I, Hahn G, Schiffmann H, Berger C, Hellige G (1999) Monitoring regional lung ventilation by functional electrical impedance tomography during assisted ventilation. Ann NY Acad Sci 873:493–505

    Article  PubMed  CAS  Google Scholar 

  15. Adler A, Amyot R, Guardo R, Bates JH, Berthiaume Y (1997) Monitoring changes in lung air and liquid volumes with electrical impedance tomography. J Appl Physiol 83:1762–1767

    PubMed  CAS  Google Scholar 

  16. Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163:69–78

    PubMed  CAS  Google Scholar 

  17. Frazer DG, Weber KC, Franz GN (1985) Evidence of sequential opening and closing of lung units during inflation-deflation of excised rat lungs. Respir Physiol 61:277–288

    Article  PubMed  CAS  Google Scholar 

  18. Bersten AD (1998) Measurement of overinflation by multiple linear regression analysis in patients with acute lung injury. Eur Respir J 12:526–532

    Article  PubMed  CAS  Google Scholar 

  19. Hedenstierna G, Tokics L, Strandberg A, Lundquist H, Brismar B (1986) Correlation of gas exchange impairment to development of atelectasis during anaesthesia and muscle paralysis. Acta Anaesthesiol Scand 30:183–191

    Article  PubMed  CAS  Google Scholar 

  20. Frerichs I, Hahn G, Hellige G (1996) Gravity-dependent phenomena in lung ventilation determined by functional EIT. Physiol Meas 17(Suppl 4A):A149–A157

    Article  PubMed  Google Scholar 

  21. Simon BA, Christensen GE, Low DA, Reinhardt JM (2005) Computed tomography studies of lung mechanics. Proc Am Thorac Soc 2(517–521):506–507

    Google Scholar 

  22. Gattinoni L, Pelosi P, Vitale G, Pesenti A, D’Andrea L, Mascheroni D (1991) Body position changes redistribute lung computed-tomographic density in patients with acute respiratory failure. Anesthesiology 74:15–23

    Article  PubMed  CAS  Google Scholar 

  23. Frerichs I, Dargaville PA, Dudykevych T, Rimensberger PC (2003) Electrical impedance tomography: a method for monitoring regional lung aeration and tidal volume distribution? Intensive Care Med 29:2312–2316

    Article  PubMed  Google Scholar 

  24. Meier T, Luepschen H, Karsten J, Leibecke T, Großherr M, Gehring H, Leonhardt S (2008) Assessment of regional lung recruitment and derecruitment during a peep trial based on electrical impedance tomography. Intensive Care Med 34:543–550

    Article  PubMed  Google Scholar 

  25. Lindgren S, Odenstedt H, Olegård C, Söndergaard S, Lundin S, Stenqvist O (2007) Regional lung derecruitment after endotracheal suction during volume- or pressure-controlled ventilation: a study using electric impedance tomography. Intensive Care Med 33:172–180

    Article  PubMed  Google Scholar 

  26. Erlandsson K, Odenstedt H, Lundin S, Stenqvist O (2006) Positive end-expiratory pressure optimization using electric impedance tomography in morbidly obese patients during laparoscopic gastric bypass surgery. Acta Anaesthesiol Scand 50:833–839

    Article  PubMed  CAS  Google Scholar 

  27. Hinz J, Gehoff A, Moerer O, Frerichs I, Hahn G, Hellige G, Quintel M (2007) Regional filling characteristics of the lungs in mechanically ventilated patients with acute lung injury. Eur J Anaesthesiol 24:414–424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by grants from “Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)”, São Paulo State Research Support Foundation and “Financiadora de Estudos e Projetos (FINEP)”, Studies and Projects Financial Support Provider and to Dixtal Biomédica, Ltda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo B. P. Amato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, E.L.V., Borges, J.B., Melo, A. et al. Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 35, 1132–1137 (2009). https://doi.org/10.1007/s00134-009-1447-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1447-y

Keywords

Navigation