Skip to main content
Log in

Gene expression profiling of human alveolar macrophages of phenotypically normal smokers and nonsmokers reveals a previously unrecognized subset of genes modulated by cigarette smoking

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Cigarette smoking is the leading cause of the respiratory diseases collectively known as chronic obstructive pulmonary disease (COPD). While the pathogenesis of COPD is complex, there is abundant evidence that alveolar macrophages (AM) play an important role. Based on the concept that COPD is a slow-progressing disorder likely involving multiple mediators released by AM activated by cigarette smoke, the present study focuses on the identification of previously unrecognized genes that may be linked to early events in the molecular pathogenesis of COPD, as opposed to factors associated with the presence of disease. To accomplish this, microarray analysis using Affymetrix microarrays was used to carry out an unbiased survey of the differences in gene expression profiles in the AM of phenotypically normal, ∼20 pack-year smokers compared to healthy nonsmokers. Although smoking did not alter the global gene expression pattern of AM, 75 genes were modulated by smoking, with 40 genes up-regulated and 35 down-regulated in the AM of smokers compared to nonsmokers. Most of these genes belong to the functional categories of immune/inflammatory response, cell adhesion and extracellular matrix, proteolysis and antiproteolysis, lysosomal function, antioxidant-related function, signal transduction, and regulation of transcription. Of these 75 genes, 69 have not been previously recognized to be up- or down-regulated in AM in association with smoking or COPD, including genes coding for proteins belonging to all of the above categories, and others belonging to various functional categories or of unknown function. These observations suggest that gene expression responses of AM associated with the stress of cigarette smoking are more complex than previously thought, and offer a variety of new insights into the complex pathogenesis of smoking-induced lung diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. American Thoracic Society (1996) Cigarette smoking and health. Am J Respir Crit Care Med 153:861–865

    Google Scholar 

  2. Pauwels RA, Rabe KF (2004) Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet 364:613–620

    Article  PubMed  Google Scholar 

  3. MacNee W (2000) Oxidants/antioxidants and COPD. Chest 117:303S–317S

    Article  PubMed  CAS  Google Scholar 

  4. Sethi JM, Rochester CL (2000) Smoking and chronic obstructive pulmonary disease. Clin Chest Med 21:67–86, viii

    Article  PubMed  CAS  Google Scholar 

  5. American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:S77–S121

    Google Scholar 

  6. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SD (1997) Requirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science 277:2002–2004

    Article  PubMed  CAS  Google Scholar 

  7. Joos L, He JQ, Shepherdson MB, Connett JE, Anthonisen NR, Pare PD, Sandford AJ (2002) The role of matrix metalloproteinase polymorphisms in the rate of decline in lung function. Hum Mol Genet 11:569–576

    Article  PubMed  CAS  Google Scholar 

  8. Bezdicek P, Crystal RG (1997) Pulmonary macrophages. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations, 2nd edn. Lippincott-Raven Publishers, Philadelphia, pp 859–875

    Google Scholar 

  9. Shapiro SD (1999) The macrophage in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160:S29–S32

    PubMed  CAS  Google Scholar 

  10. Barnes PJ (2003) New concepts in chronic obstructive pulmonary disease. Annu Rev Med 54:113–129

    Article  PubMed  CAS  Google Scholar 

  11. Reilly JJ, Chapman HA (1988) Association between alveolar macrophage plasminogen activator activity and indices of lung function in young cigarette smokers. Am Rev Respir Dis 138:1422–1428

    PubMed  CAS  Google Scholar 

  12. Wright JL, Hobson JE, Wiggs B, Pare PD, Hogg JC (1988) Airway inflammation and peribronchiolar attachments in the lungs of nonsmokers, current and ex-smokers. Lung 166:277–286

    Article  PubMed  CAS  Google Scholar 

  13. Kirkham PA, Spooner G, Ffoulkes-Jones C, Calvez R (2003) Cigarette smoke triggers macrophage adhesion and activation: role of lipid peroxidation products and scavenger receptor. Free Radic Biol Med 35:697–710

    Article  PubMed  CAS  Google Scholar 

  14. Koch A, Giembycz M, Stirling RG, Lim S, Adcock I, Wassermann K, Erdmann E, Chung KF (2004) Effect of smoking on MAP kinase-induced modulation of IL-8 in human alveolar macrophages. Eur Respir J 23:805–812

    PubMed  CAS  Google Scholar 

  15. Russi TJ, Crystal RG (1997) Use of bronchoalveolar lavage and airway brushing to investigate the human lung. In: Crystal RG, West JB, Weibel ER, Barnes PJ (eds) The lung: scientific foundations, 2nd edn. Lippincott-Raven Publishers, Philadelphia, pp 371–382

    Google Scholar 

  16. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868

    Article  PubMed  CAS  Google Scholar 

  17. Chuaqui RF, Bonner RF, Best CJ, Gillespie JW, Flaig MJ, Hewitt SM, Phillips JL, Krizman DB, Tangrea MA, Ahram M, Linehan WM, Knezevic V, Emmert-Buck MR (2002) Post-analysis follow-up and validation of microarray experiments. Nat Genet (Suppl) 32:509–514

    Article  PubMed  CAS  Google Scholar 

  18. Capelli A, Di Stefano A, Gnemmi I, Balbo P, Cerutti CG, Balbi B, Lusuardi M, Donner CF (1999) Increased MCP-1 and MIP-1beta in bronchoalveolar lavage fluid of chronic bronchitis. Eur Respir J 14:160–165

    Article  PubMed  CAS  Google Scholar 

  19. de Boer WI, Sont JK, van Schadewijk A, Stolk J, van Krieken JH, Hiemstra PS (2000) Monocyte chemoattractant protein 1, interleukin 8, and chronic airways inflammation in COPD. J Pathol 190:619–626

    Article  PubMed  Google Scholar 

  20. Traves SL, Culpitt SV, Russell RE, Barnes PJ, Donnelly LE (2002) Increased levels of the chemokines GROalpha and MCP-1 in sputum samples from patients with COPD. Thorax 57:590–595

    Article  PubMed  CAS  Google Scholar 

  21. Rose RM, Kobzik L, Filderman AE, Vermeulen MW, Dushay K, Donahue RE (1992) Characterization of colony stimulating factor activity in the human respiratory tract. Comparison of healthy smokers and nonsmokers. Am Rev Respir Dis 145:394–399

    PubMed  CAS  Google Scholar 

  22. Finlay GA, O’Driscoll LR, Russell KJ, D’Arcy EM, Masterson JB, Fitz Gerald MX, O’Connor CM (1997) Matrix metalloproteinase expression and production by alveolar macrophages in emphysema. Am J Respir Crit Care Med 156:240–247

    PubMed  CAS  Google Scholar 

  23. Fujita J, Skold CM, Daughton DM, Ertl RF, Takahara J, Rennard SI (1999) Modulation of elastase binding to elastin by human alveolar macrophage-derived lipids. Am J Respir Crit Care Med 160:802–807

    PubMed  CAS  Google Scholar 

  24. Chu CT, Howard GC, Misra UK, Pizzo SV (1994) Alpha 2-macroglobulin: a sensor for proteolysis. Ann N Y Acad Sci 737:291–307

    Article  PubMed  CAS  Google Scholar 

  25. Hackett NR, Heguy A, Harvey BG, O’Connor TP, Luettich K, Flieder DB, Kaplan R, Crystal RG (2003) Variability of antioxidant-related gene expression in the airway epithelium of cigarette smokers. Am J Respir Cell Mol Biol 29:331–343

    Article  PubMed  CAS  Google Scholar 

  26. Betsuyaku T, Nishimura M, Takeyabu K, Tanino M, Venge P, Xu S, Kawakami Y (1999) Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 159:1985–1991

    PubMed  CAS  Google Scholar 

  27. Ekberg-Jansson A, Andersson B, Bake B, Boijsen M, Enanden I, Rosengren A, Skoogh BE, Tylen U, Venge P, Lofdahl CG (2001) Neutrophil-associated activation markers in healthy smokers relates to a fall in DL(CO) and to emphysematous changes on high resolution CT. Respir Med 95:363–373

    Article  PubMed  CAS  Google Scholar 

  28. Keatings VM, Barnes PJ (1997) Granulocyte activation markers in induced sputum: comparison between chronic obstructive pulmonary disease, asthma, and normal subjects. Am J Respir Crit Care Med 155:449–453

    PubMed  CAS  Google Scholar 

  29. O’Regan A (2003) The role of osteopontin in lung disease. Cytokine Growth Factor Rev 14:479–488

    Article  PubMed  CAS  Google Scholar 

  30. Gravallese EM (2003) Osteopontin: a bridge between bone and the immune system. J Clin Invest 112:147–149

    Article  PubMed  Google Scholar 

  31. Mazzali M, Kipari T, Ophascharoensuk V, Wesson JA, Johnson R, Hughes J (2002) Osteopontin—a molecule for all seasons. QJM 95:3–13

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi F, Takahashi K, Okazaki T, Maeda K, Ienaga H, Maeda M, Kon S, Uede T, Fukuchi Y (2001) Role of osteopontin in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 24:264–271

    PubMed  CAS  Google Scholar 

  33. Berman JS, Serlin D, Li X, Whitley G, Hayes J, Rishikof DC, Ricupero DA, Liaw L, Goetschkes M, O’Regan AW (2004) Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice. Am J Physiol Lung Cell Mol Physiol 286:L1311–L1318

    Article  PubMed  CAS  Google Scholar 

  34. Van Damme J, Wuyts A, Froyen G, Van Coillie E, Struyf S, Billiau A, Proost P, Wang JM, Opdenakker G (1997) Granulocyte chemotactic protein-2 and related CXC chemokines: from gene regulation to receptor usage. J Leukoc Biol 62:563–569

    PubMed  Google Scholar 

  35. Snider GL, Ciccolella DE, Morris SM, Stone PJ, Lucey EC (1991) Putative role of neutrophil elastase in the pathogenesis of emphysema. Ann N Y Acad Sci 624:45–59

    Article  PubMed  CAS  Google Scholar 

  36. Suki B, Lutchen KR, Ingenito EP (2003) On the progressive nature of emphysema: roles of proteases, inflammation, and mechanical forces. Am J Respir Crit Care Med 168:516–521

    Article  PubMed  Google Scholar 

  37. Saitoh H, Heguy A, O’Connor TP, Harvey BG, Leopold PL, Hackett NR, Cieciuch A, Crystal RG (2004) Adenovirus-mediated delivery of ADAM10, a novel candidate gene for COPD, results in emphysematous changes in the mouse lung. Mol Ther 9:S185

    Google Scholar 

  38. Martinet N, Alla F, Farre G, Labib T, Drouot H, Vidili R, Picard E, Gaube MP, Le Faou D, Siat J, Borelly J, Vermylen P, Bazarbachi T, Vignaud JM, Martinet Y (2000) Retinoic acid receptor and retinoid X receptor alterations in lung cancer precursor lesions. Cancer Res 60:2869–2875

    PubMed  CAS  Google Scholar 

  39. Xu XC, Lee JS, Lee JJ, Morice RC, Liu X, Lippman SM, Hong WK, Lotan R (1999) Nuclear retinoid acid receptor beta in bronchial epithelium of smokers before and during chemoprevention. J Natl Cancer Inst 91:1317–1321

    Article  PubMed  CAS  Google Scholar 

  40. Soria JC, Xu X, Liu DD, Lee JJ, Kurie J, Morice RC, Khuri F, Mao L, Hong WK, Lotan R (2003) Retinoic acid receptor beta and telomerase catalytic subunit expression in bronchial epithelium of heavy smokers. J Natl Cancer Inst 95:165–168

    Article  PubMed  CAS  Google Scholar 

  41. Spira A, Beane J, Shah V, Liu G, Schembri F, Yang X, Palma J, Brody JS (2004) Effects of cigarette smoke on the human airway epithelial cell transcriptome. Proc Natl Acad Sci USA 101:10143–10148

    Article  PubMed  CAS  Google Scholar 

  42. Ning W, Li CJ, Kaminski N, Feghali-Bostwick CA, Alber SM, Di YP, Otterbein SL, Song R, Hayashi S, Zhou Z, Pinsky DJ, Watkins SC, Pilewski JM, Sciurba FC, Peters DG, Hogg JC, Choi AM (2004) Comprehensive gene expression profiles reveal pathways related to the pathogenesis of chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 101:14895–14900

    Article  PubMed  CAS  Google Scholar 

  43. Miura K, Bowman ED, Simon R, Peng AC, Robles AI, Jones RT, Katagiri T, He P, Mizukami H, Charboneau L, Kikuchi T, Liotta LA, Nakamura Y, Harris CC (2002) Laser capture microdissection and microarray expression analysis of lung adenocarcinoma reveals tobacco smoking- and prognosis-related molecular profiles. Cancer Res 62:3244–3250

    PubMed  CAS  Google Scholar 

  44. Masuya M, Katayama N, Hoshino N, Nishikawa H, Sakano S, Araki H, Mitani H, Suzuki H, Miyashita H, Kobayashi K, Nishii K, Minami N, Shiku H (2002) The soluble Notch ligand, Jagged-1, inhibits proliferation of CD34+ macrophage progenitors. Int J Hematol 75:269–276

    Article  PubMed  CAS  Google Scholar 

  45. Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16:534–554

    Article  PubMed  CAS  Google Scholar 

  46. Amin K, Ekberg-Jansson A, Lofdahl CG, Venge P (2003) Relationship between inflammatory cells and structural changes in the lungs of asymptomatic and never smokers: a biopsy study. Thorax 58:135–142

    Article  PubMed  CAS  Google Scholar 

  47. Pinot F, el Yaagoubi A, Christie P, Dinh-Xuan AT, Polla BS (1997) Induction of stress proteins by tobacco smoke in human monocytes: modulation by antioxidants. Cell Stress Chaperones 2:156–161

    Article  PubMed  CAS  Google Scholar 

  48. Vayssier M, Banzet N, Francois D, Bellmann K, Polla BS (1998) Tobacco smoke induces both apoptosis and necrosis in mammalian cells: differential effects of HSP70. Am J Physiol 275:L771–L779

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank N Mohamed for help in preparing this manuscript. These studies were supported, in part, by R01 HL074326-01; M01RR00047; and the Will Rogers Memorial Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald G. Crystal.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heguy, A., O’Connor, T.P., Luettich, K. et al. Gene expression profiling of human alveolar macrophages of phenotypically normal smokers and nonsmokers reveals a previously unrecognized subset of genes modulated by cigarette smoking. J Mol Med 84, 318–328 (2006). https://doi.org/10.1007/s00109-005-0008-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-005-0008-2

Keywords

Navigation