Skip to main content

Advertisement

Log in

Microarray analysis of long non-coding RNAs in COPD lung tissue

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Long noncoding RNAs (lncRNAs) play an important role in the pathogenesis of many human diseases. In this study, we provide the description of genome-wide lncRNA expression in the lung tissue of non-smokers without Chronic obstructive pulmonary disease (COPD), of smokers without COPD and of smokers with COPD.

Methods

RNA was extracted from human lung tissue and analysed using an Agilent Human lncRNA + mRNA Array v2.0 system.

Results

39,253 distinct lncRNA transcripts were detected in the lung tissues of all subjects. In smokers without COPD 87 lncRNAs were significantly up-regulated and 244 down-regulated compared to non-smokers without COPD with RNA50010|UCSC-9199-1005 and RNA58351| CombinedLit_316_550, the most over- and under-regulated, respectively. In contrast, in COPD patients 120 lncRNAs were over-expressed and 43 under-expressed compared with smokers without COPD with RNA44121|UCSC-2000-3182 and RNA43510|UCSC-1260-3754 being the most over- and under-regulated, respectively. Gene Ontology (GO) and pathway analysis indicated that cigarette smoking was associated with activation of metabolic pathways, whereas COPD transcripts were associated with ‘hematopoietic cell lineage’, intermediary metabolism and immune system processes.

Conclusions

We conclude that the altered expression of lncRNAs might play partial role in pathways implicated in COPD onset and progression such as intermediary metabolism and the immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease. 2014.

  2. Carr SJ, Hill K, Brooks D, Goldstein RS. Pulmonary rehabilitation after acute exacerbation of chronic obstructive pulmonary disease in patients who previously completed a pulmonary rehabilitation program. J Cardiopulm Rehabil Prev. 2009;29:318–24.

    Article  CAS  PubMed  Google Scholar 

  3. Sullivan SD, Ramsey SD, Lee TA. The economic burden of COPD. Chest. 2000;117:5S–9S.

    Article  CAS  PubMed  Google Scholar 

  4. Lokke A, Lange P, Scharling H, Fabricius P, Vestbo J. Developing COPD: a 25 year follow up study of the general population. Thorax. 2006;61:935–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Costa FF. Non-coding RNAs, epigenetics and complexity. Gene. 2008;410:9–17.

    Article  CAS  PubMed  Google Scholar 

  6. Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009;10:637–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136:629–41.

    Article  CAS  PubMed  Google Scholar 

  8. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Brockdorff N, Ashworth A, Kay GF, McCabe VM, Norris DP, Cooper PJ, et al. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992;71:515–26.

    Article  CAS  PubMed  Google Scholar 

  10. Brown CJ, Hendrich BD, Rupert JL, Lafreniere RG, Xing Y, Lawrence J, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71:527–42.

    Article  CAS  PubMed  Google Scholar 

  11. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464:1071–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011;477:295–300.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Khalil AM, Guttman M, Huarte M, Garber M, Raj A, Rivea Morales D, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Nat Acad Sci USA. 2009;106:11667–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011;21:354–61.

    Article  CAS  PubMed  Google Scholar 

  15. Massone S, Vassallo I, Fiorino G, Castelnuovo M, Barbieri F, Borghi R, et al. 17A, a novel non-coding RNA, regulates GABA B alternative splicing and signaling in response to inflammatory stimuli and in Alzheimer disease. Neurobiol Dis. 2011;41:308–17.

    Article  CAS  PubMed  Google Scholar 

  16. Thai P, Statt S, Chen CH, Liang E, Campbell C, Wu R. Characterization of a novel long non-coding RNA, SCAL1, induced by cigarette smoke and elevated in lung cancer cell lines. Am J Respir Cell Mol Biol. 2013;49:204–11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A, Bussotti G, et al. Long noncoding RNAs with enhancer-like function in human cells. Cell. 2010;143:46–58.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, Collins PJ, Chu TM, Bao W, et al. Performance comparison of one-color and two-color platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol. 2006;24:1140–50.

    Article  CAS  PubMed  Google Scholar 

  19. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004;5:101–13.

    Article  CAS  PubMed  Google Scholar 

  20. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Motz GT, Eppert BL, Sun G, Wesselkamper SC, Linke MJ, Deka R, et al. Persistence of lung CD8 T cell oligoclonal expansions upon smoking cessation in a mouse model of cigarette smoke-induced emphysema (Baltimore, Md : 1950). J Immunol. 2008;181:8036–43.

    Article  CAS  PubMed  Google Scholar 

  22. Motz GT, Eppert BL, Wesselkamper SC, Flury JL, Borchers MT. Chronic cigarette smoke exposure generates pathogenic T cells capable of driving COPD-like disease in Rag2-/- mice. Am J Respir Crit Care Med. 2010;181:1223–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Sullivan AK, Simonian PL, Falta MT, Mitchell JD, Cosgrove GP, Brown KK, et al. Oligoclonal CD4 + T cells in the lungs of patients with severe emphysema. Am J Respir Crit Care Med. 2005;172:590–6.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Lee SH, Goswami S, Grudo A, Song LZ, Bandi V, Goodnight-White S, et al. Antielastin autoimmunity in tobacco smoking-induced emphysema. Nat Med. 2007;13:567–9.

    Article  CAS  PubMed  Google Scholar 

  25. Rovina N, Koutsoukou A, Koulouris NG. Inflammation and Immune Response in COPD: where do we stand? Mediators Inflamm. 2013;2013:413735.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Hukkanen J, Pelkonen O, Hakkola J, Raunio H. Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol. 2002;32:391–411.

    Article  CAS  PubMed  Google Scholar 

  27. Engstrom G, Segelstorm N, Ekberg-Aronsson M, Nilsson PM, Lindgarde F, Lofdahl CG. Plasma markers of inflammation and incidence of hospitalisations for COPD: results from a population-based cohort study. Thorax. 2009;64:211–5.

    Article  CAS  PubMed  Google Scholar 

  28. Barnes PJ, Shapiro SD, Pauwels RA. Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J. 2003;22:672–88.

    Article  CAS  PubMed  Google Scholar 

  29. Ferrari R, Tanni SE, Caram LM, Correa C, Correa CR, Godoy I. Three-year follow-up of Interleukin 6 and C-reactive protein in chronic obstructive pulmonary disease. Respir Res. 2013;14:24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Perry MM, Baker JE, Gibeon DS, Adcock IM, Chung KF. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol. 2014;50:7–17.

    PubMed Central  PubMed  Google Scholar 

  31. Sandilands A, Smith FJ, Lunny DP, Campbell LE, Davidson KM, Maccallum SF, et al. Generation and characterisation of keratin 7 (k7) knockout mice. PLoS One. 2013;8:e64404.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This study was helped by Dr. Liang Chen and Dr. Quan Zhu for the clinical information support. This study was supported by the National Natural Science Foundation of China (81070025, 81470237), Jiangsu Health Promotion Project, and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, JX10231801).

Conflict of interest

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yao.

Additional information

Responsible Editor: Graham R. Wallace.

H. Bi and J. Zhou contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bi, H., Zhou, J., Wu, D. et al. Microarray analysis of long non-coding RNAs in COPD lung tissue. Inflamm. Res. 64, 119–126 (2015). https://doi.org/10.1007/s00011-014-0790-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-014-0790-9

Keywords

Navigation