Skip to main content
Log in

Digital cloning: Identification of human cDNAs homologous to novel kinases through expressed sequence tag database searching

  • Original Paper
  • Published:
Journal of Biomedical Science

Abstract

Identification of novel kinases based on their sequence conservation within kinase catalytic domain has relied so far on two major approaches, low-stringency hybridization of cDNA libraries, and PCR method using degenerate primers. Both of these approaches at times are technically difficult and time-consuming. We have developed a procedure that can significantly reduce the time and effort involved in searching for novel kinases and increase the sensitivity of the analysis. This procedure exploits the computer analysis of a vast resource of human cDNA sequences represented in the expressed sequence tag (EST) database. Seventeen novel human cDNA clones showing significant homology to serine/threonine kinases, including STE-20, CDK- and YAK-related family kinases, were identified by searching EST database. Further sequence analysis of these novel kinases obtained either directly from EST clones or from PCR-RACE products confirmed their identity as protein kinases. Given the rapid accumulation of the EST database and the advent of powerful computer analysis software, this approach provides a fast, sensitive, and economical way to identify novel kinases as well as other genes from EST database.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe S, Yagi T, Ishiyama S, Hiroe M, Marumo F, Ikawa Y. Molecular cloning of a novel serine/threonine kinase, MRK, possibly involved in cardiac development. Oncogene 11:2187–2195;1995.

    PubMed  Google Scholar 

  2. Adams MD, Dubnick M, Kerlavage AR, Moreno R, Kelley JM, Utterback TR, Nagle JW, Fields C, Venter JC. Sequence identification of 2,375 human brain genes. Nature 355:632–634;1992.

    Article  PubMed  Google Scholar 

  3. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF, et al. Complement DNA sequencing: Expressed sequence tags and the human genome project. Science 252:1651–1656;1991.

    Google Scholar 

  4. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 215:403–410;1990.

    Article  PubMed  Google Scholar 

  5. Banfi S, Borsani G, Rossi E, Bernard L, Guffanti A, Rubboli F, Marchitiello A, Giglio S, Coluccia E, Zollo M, Zuffardi O, Ballabio A. Identification and mapping of human cDNAs homologous to Drosophila mutant genes through EST database searching. Nat Genet 13:167–174;1996.

    Article  PubMed  Google Scholar 

  6. Bassett DE Jr, Boguski MS, Spencer F, Reeves R, Kim S, Weaver T, Hieter P. Genome cross-referencing and XREFdb: Implications for the identification and analysis of genes mutated in human. Nat Genet 15:339–344;1997.

    Article  PubMed  Google Scholar 

  7. Boguski MS, Lowe TM, Tolstoshev CM. dbEST-database for expressed sequence tags. Nat Genet 4:332–333;1993.

    Article  PubMed  Google Scholar 

  8. Bossemeyer D, Engh RA, Kinzel V, Ponstingl H, Huber R. Phosphotransferase and substrate binding mechanism of the cAMP-dependent protein kinase catalytic subunit from porcine heart as deduced from the 2.0 A structure of the complex with Mn2+ adenylyl imidodiphosphate and inhibitor peptide PKI. EMBO J 12:849–859;1993.

    PubMed  Google Scholar 

  9. Braren R, Firner K, Balasubramanian S, Bazan F, Thiele HG, Haag F, Koch-Nolte F. Use of the EST database resource to identify and clone novel mono(ADP-ribosyl) transferase gene family members. Adv Exp Med Biol 419:163–168;1997.

    PubMed  Google Scholar 

  10. Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J. Human Ste20 homologue hPAK1 links GTPase to the JNK MAP kinase pathway. Curr Biol 6:598–605;1996.

    Article  PubMed  Google Scholar 

  11. Cohen P. Signal integration at the level of protein kinases, protein phosphatases and their substrates. Trends Biochem Sci 17:408–413;1992.

    Article  PubMed  Google Scholar 

  12. De Bondt HL, Rosenblatt J, Jancarik J, Jones, HD, Morgan DO, Kim SH. Crystal structure of cyclin-dependent kinase 2. Nature 363:595–600;1993.

    Google Scholar 

  13. Edelman AM, Blumenthal DK, Krebs EG. Protein serine/threonine kinases. Annu Rev Biochem 56:567–613;1987.

    PubMed  Google Scholar 

  14. Elledge SJ, Spottswood MR. A new human p34 protein kinase, CDK2, identified by complementation of a cdc28 mutation inSaccharomyces cerevisiae, is a homology of Xenopus Egl. EMBO J 10:2653–2659;1991.

    PubMed  Google Scholar 

  15. Faranda S. Characterization and fine localization of two new genes in Xq28 using the genomic sequence/EST database screening approach. Genomics 34:323–327;1996.

    Article  PubMed  Google Scholar 

  16. Franco GR. Identification of newSchistosoma mansoni genes by the EST strategy using a directional cDNA library. Gene 152:141–147;1995.

    Article  PubMed  Google Scholar 

  17. Frohman MA. Rapid amplification of complementary DNA ends for generation of full-length complementary DNAs: Thermal RACE. Methods Enzymol 218:340–356;1993.

    PubMed  Google Scholar 

  18. Garrett S, Broach J. Loss of Ras activity inSaccharomyces cerevisiae is expressed by disruptions of a new gene, YAK1, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 3:1336–1348;1989.

    PubMed  Google Scholar 

  19. Gerhold D, Caskey T. It's the genes! EST access to human genome content. Bioessays 18:973–981;1996.

    Article  PubMed  Google Scholar 

  20. Gianfrancesco F, Esposito T, Ruini L, Houlgatte R, Nagaraja R, D'Esposito M, Rocchi M, Auffray C, Schlessinger D, D'Urso M, Forabosco A. Mapping of 59 EST gene markers in 31 intervals spanning the human X chromosome. Gene 187:179–184;1997.

    Article  PubMed  Google Scholar 

  21. Gonzalez FA, Raden DL, Rigby MR, Davis RJ. Heterogeneous expression of four MAP kinase isoforms in human tissues. FEBS Lett 304:170–178;1992.

    Article  PubMed  Google Scholar 

  22. Grana X, De Luca A, Sang N, Fu Y, Claudio PP, Rosenblatt J, Morgan DO, Giordano A. PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci USA 91:3834–3838;1994.

    PubMed  Google Scholar 

  23. Hanks SK, Hunter T. The eukaryotic protein kinase superfamily: Kinase (catalytic) domain structure and classification. FASEB J 9:576–596;1995.

    PubMed  Google Scholar 

  24. Hanks SK, Quinn AM. Protein kinase catalytic domain sequences database: Identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38–62;1991.

    PubMed  Google Scholar 

  25. Hanks SK, Quinn AM, Hunter T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52;1988.

    Google Scholar 

  26. Hartl DL. EST! EST!! EST!!! Bioessays 18:1021–1023;1996.

    Article  PubMed  Google Scholar 

  27. Hunter T, Plowman GD. The protein kinases of budding yeast: Six score and more. Trends Biochem Sci 22:18–21;1997.

    Article  Google Scholar 

  28. Jain R, Gomer RH, Murtagh JJ Jr. Increasing specificity from the PCR-RACE technique. Biotechniques 12:58–59;1992.

    PubMed  Google Scholar 

  29. Johannes FJ, Prestle J, Eis S, Oberhagemann P, Pfizenmaier K. PKCu is a novel, atypical member of the protein kinase C family. J Biol Chem 269:6140–6148;1994.

    PubMed  Google Scholar 

  30. Kentrup H, Becker W, Heukelbach J, Wilmes A, Schurmann A, Huppertz C, Kainulainen H, Joost HG. Dyrk, a dual specificity protein kinase with unique structural features whose activity is dependent on tyrosine residues between subdomains VII and VIII. J Biol Chem 271:3488–3495;1996.

    Article  PubMed  Google Scholar 

  31. Kiefer F, Tibbles LA, Anafi M, Janssen A, Woodgett JR, Iscove NN. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. EMBO J 15:7013–7025;1996.

    PubMed  Google Scholar 

  32. Kochs G, Hummel R, Meyer D, Hug H, Marme D, Sarre TF. Activation and substrate specificity of the human protein kinase C alpha and zeta isozymes. Eur J Biochem 216:597–606;1993.

    Article  PubMed  Google Scholar 

  33. Madden TL, Tatusov RL, Zhang J. Applications of network BLAST server. Methods Enzymol 266:131–141;1996.

    PubMed  Google Scholar 

  34. Nangaku M, Shankland SJ, Kurokawa K, Bomsztyk K, Johnson RJ, Couser WG. Cloning of a new human gene with short consensus repeats using the EST database. Immunogenetics 46:99–103;1997.

    Article  PubMed  Google Scholar 

  35. Okubo K, Hori N, Matoba R, Niiyama T, Fukushima A, Kojima Y, Matsubara K. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nat Genet 2:173–179;1992.

    Article  PubMed  Google Scholar 

  36. Pombo CM, Bonventre JV, Molnar A, Kyriakis J, Force T. Activation of a human Ste20-like kinase by oxidant stress defines a novel stress response pathway. EMBO J 15:4537–4546;1996.

    PubMed  Google Scholar 

  37. Ramer SW, Davis RW. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 90:452–456;1993.

    PubMed  Google Scholar 

  38. Sauer K, Weigmann K, Sigrist S, Lehner CF. Novel members of the cdc2-related kinase family in Drosophila: cdk4/6, cdk5, PFTAIRE, and PITSLRE kinase. Mol Biol Cell 7:1759–1769;1996.

    PubMed  Google Scholar 

  39. Shpaer EG, Robinson M, Yee D, Candlin JD, Mines R, Hunkapiller T. Sensitivity and selectivity in protein similarity searches: A comparison of Smith-Waterman in hardware to BLAST and FASTA. Genomics 38:179–191;1996.

    Article  PubMed  Google Scholar 

  40. Tatusov RL, Koonin EV. A simple tool to search for sequence motifs that are conserved in BLAST outputs. Comput Appl Biosci 10:457–459;1994.

    PubMed  Google Scholar 

  41. Thomis DC, Floyd-Smith G, Samuel CE. Mechanism of interferon action. cDNA structure and regulation of a novel splice-site variant of the catalytic subunit of human protein kinase A from interferon treated human cells. J Biol Chem 267:10723–10728;1992.

    PubMed  Google Scholar 

  42. Wilson R, Ainscough R, Anderson K, Baynes C, Berks M, Bonfield J, Burton J, Connell M, Copsey T, Cooper J, et al. 2.2 Mb of contiguous nucleotide sequence from chromosome III ofC. elegans. Nature 368:32–38;1994.

    Article  PubMed  Google Scholar 

  43. Wolfsberg TG, Landsman D. A comparison of expressed sequence tags (ESTs) to human genomic sequences. Nucleic Acids Res 25:1626–1632;1997.

    Article  PubMed  Google Scholar 

  44. Wu CH, Zhao S, Chen HL, Lo CJ, McLarty J. Motif identification neural design for rapid and sensitive protein family search. Comput Appl Biosci 12:109–118;1996.

    PubMed  Google Scholar 

  45. Yanai A, Arama E, Kilfin G, Motro B. aykl, a novel mammalian gene related to Drosophila aurora centrosome separation kinase, is specifically expressed during meiosis. Oncogene 14:2943–2950;1997.

    Article  PubMed  Google Scholar 

  46. Zhang F, Strand A, Robbins D, Cobb MH, Goldsmith EJ. Atomic structure of the MAP kinase ERK2 at 2.3 A resolution. Nature 367:704–711;1994.

    Google Scholar 

  47. Zheng J, Knighton DR, ten Eyck LF, Karlsson R, Xuong N, Taylor SS, Sowadski JM. Crystal structure of the catalytic subunit of cAMP-dependent protein kinase complexed with MgATP and peptide inhibitor. Biochemistry 32:2154–2161;1993.

    Article  PubMed  Google Scholar 

  48. Zhang J, Madden TL. PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res 7:649–656;1997.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HC., Kung, HJ. & Robinson, D. Digital cloning: Identification of human cDNAs homologous to novel kinases through expressed sequence tag database searching. J Biomed Sci 5, 86–92 (1998). https://doi.org/10.1007/BF02258361

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02258361

Key Words

Navigation