Skip to main content
Log in

Intra- and extragenic marker haplotypes of CFTR mutations in cystic fibrosis families

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

In order to facilitate the screening for the less common mutations in the cystic fibrosis (CF) gene viz., the CF transmembrane conductance regulator gene (CFTR), marker haplotypes were determined for German nonCF (N) and CF chromosomes by polymerase chain reaction analysis of four polymorphisms upstream of the CF gene (XV-2c, KM.19, MP6-D9, J44) and six intragenic polymorphisms (GATT, TUB9, M470V, T854T, TUB18, TUB20) that span the CFTR gene from exon 6 through exon 21. Novel informative sequence variants of CFTR were detected in front of exons 10 (1525-61 A or G), 19 (3601-65 C or A), and 21 (4006-200 A or G). The CF locus exhibits strong long-range marker-marker linkage disequilibrium with breakpoints of recombination between XV-2c and KM.19, and between exons 10 and 19 of CFTR. Marker alleles of GATT-TUB9 and TUB18-TUB20 were found to be in absolute linkage disequilibrium. Four major haplotypes encompass more than 90% of German N and CF chromosomes. Fifteen CFTR mutations detected on 421 out of 500 CF chromosomes were each identified on one of these four predominant 7-marker haplotypes. Whereas all analysed ΔF508 chromosomes carried the same KM.19-D9-J44-GATT-TUB9-M470V-T854T haplotype, another frequent mutation in Germany, R553X, was identified on two different major haplotypes. Hence, a priori haplotyping cannot exclude a particular CF mutation, but in combination with population genetic data, enables mutations to be ranked by decreasing probability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chehab EF, Johnson J, Louie E, Goossens M, Kawasaki E, Erlich H (1991) A dimorphic 4-bp repeat in the cystic fibrosis gene is in absolute linkage disequilibrium with the ΔF508 mutation: implications for prenatal diagnosis and mutation origin. Am J Hum Genet 48:223–226

    CAS  PubMed  Google Scholar 

  • Cooper DN, Krawczak M (1990) The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum Genet 85:55–74

    Article  CAS  PubMed  Google Scholar 

  • Cutting GR, Kasch LM, Rosenstein BJ, Zielenski J, Tsui L-C, Antonarakis SE, Kazazian HH Jr (1990) A cluster of cystic fibrosis mutations in the first nucleotide-binding fold of the cystic fibrosis conductance regulator protein. Nature 346:366–368

    Article  CAS  PubMed  Google Scholar 

  • Dean M, Drumm ML, Stewart C, Gerrard B, Perry A, Hidaka N, Cole JL, Collins FS, Iannuzzi MC (1990a) Approaches to localizing disease genes as applied to cystic fibrosis. Nucleic Acids Res 18:345–350

    CAS  PubMed  Google Scholar 

  • Dean M, White M, Amos J, Gerrard B, Stewart C, Khaw K-T, Leppert M (1990b) Multiple mutations in highly conserved residues are found in mildly affected cystic fibrosis patients. Cell 61:863–870

    Article  CAS  PubMed  Google Scholar 

  • Devoto M, Ronchetto P, Fanen P, Orriols JJT, Romeo G, Goossens M, Ferrari M, Magnani C, Seia M, Cremonesi L (1991) Screening for non-delta F508 mutations in five exons of the cystic fibrosis conductance regulator (CFTR) gene in Italy. Am J Hum Genet 48:1127–1132

    CAS  PubMed  Google Scholar 

  • Dörk T, Wulbrand U, Tümmler B (1991) A Hinf1 polymorphism in the cystic fibrosis gene CFTR. Nucleic Acids Res 19:2517

    PubMed  Google Scholar 

  • European Working Group on CF Genetics (EWGCFG) (1990) Gradient of distribution in Europe of the major CF mutation and of its associated haplotype. Hum Genet 85:436–445

    Google Scholar 

  • Gait MT (1986) Oligonucleotide synthesis: a practical approach. IRL Press, Oxford, UK

    Google Scholar 

  • Gasparini P, Dognini M, Bonizzato A, Pignatti PF, Morral N, Estivill X (1991a) A tetranucleotide repeat polymorphism in the cystic fibrosis gene. Hum Genet 86:625

    Article  CAS  PubMed  Google Scholar 

  • Gasparini P, Nunes V, Savoia A, Dognini M, Morral N, Gaona A, Bonizzato A, Chillon M, Sangiuolo F, Novelli G, Dallapiccola B, Pignatti PF, Estivill X (1991b) The search for South European cystic fibrosis mutations: identification of two new mutations, four variants, and intronic sequences. Genomics 10:193–200

    CAS  PubMed  Google Scholar 

  • Giannelli F, Green PM, High KA, Lozier JN, Lillicrap DP, Ludwig M, Olek K, Reitsma PH, Goossens M, Yoshioka A, Sommer S, Brownlee GG (1990) Haemophilia B: database of point mutations and short additions and deletions. Nucleic Acids Res 18:4053–4059

    CAS  PubMed  Google Scholar 

  • Gross-Bellard M, Dudet P, Chambon P (1973) Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem 36:32–38

    Article  CAS  PubMed  Google Scholar 

  • Guillermit H, Fanen P, Ferec C (1990) A 3′ splice site consensus sequence mutation in the cystic fibrosis gene. Hum Genet 85:450–453

    CAS  PubMed  Google Scholar 

  • Gyllenstein UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerase chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85:7652–7656

    Google Scholar 

  • Haliassos A, Chomel JC, Tesson L, Baudis M, Kruh J, Kaplan JC, Kitzis A (1989) Modification of enzymatically amplified DNA for the detection of point mutations. Nucleic Acids Res 17:3606

    CAS  PubMed  Google Scholar 

  • Highsmith WE Jr, Strong T, Burch N, Smith T, Silverman LM, Collins FS, Boucher R, Knowles MR (1990) Identification of a splicing error of exon 14b giving rise to a frameshift mutation in a consanguineous family with mild cystic fibrosis. Pediatr Pulmonol [Suppl] 5:11A

  • Horn GT, Richards B, Merrill JJ, Klinger KW (1990) Characterization and rapid diagnostic analysis of DNA polymorphisms closely linked to the cystic fibrosis locus. Clin Chem 36:1614–1619

    CAS  PubMed  Google Scholar 

  • Huth A, Estivill X, Grade K, Billwitz H, Speer A, Rosenthal A, Williamson R, Ramsay M, Coutelle C (1989) Polymerase chain reaction for detection of the pMP6d-9/MypI RFLP, a marker closely linked to the cystic fibrosis mutation. Nucleic Acids Res 17:7118

    CAS  PubMed  Google Scholar 

  • Hyde SC, Emsley P. Hartshorn MJ, Mimmack MM, Gileadi U, Pearce SR, Gallagher MP, Gill DR, Hubbard RE, Higgins CF (1990) Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport. Nature 346:362–365

    Article  CAS  PubMed  Google Scholar 

  • Kerem BS, Rommens JM, Buchanan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui L-C (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080

    CAS  PubMed  Google Scholar 

  • Kerem B, Zielenski J, Markiewicz D, Bozon D, Gazit E, Yahaf J, Kennedy D, Riordan JR, Collins FS, Rommens JM, Tsui L-C (1990) Identification of mutations in regions corresponding to the two putative nucleotide (ATP-)binding folds of the cystic fibrosis gene. Proc Natl Acad Sci USA 87:8447–8451

    CAS  PubMed  Google Scholar 

  • Klinger KW, Stanislovitis P, Merril J, Horn GT (1991) Molecular and genetic analysis at the CF locus. Adv Exp Med Biol 290:39–43

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Knowles M, O'Brien WE, Beaudet AL (1990) Benign missense variations in the cystic fibrosis gene. Am J Hum Genet 47:611–615

    CAS  PubMed  Google Scholar 

  • Krawczak M, Konecki DS, Schmidtke J, Dück M, Engel W, Nützenadel W, Trefz FK (1988) Allelic association of the cystic fibrosis locus and two DNA markers, XV2c and KM19, in 55 German families. Hum Genet 80:78–80

    Article  CAS  PubMed  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Osborne L, Knight RA, Santis G, Hodson M (1991) A mutation in the second nucleotide binding fold of the cystic fibrosis gene. Am J Hum Genet 48:608–612

    CAS  PubMed  Google Scholar 

  • Quere I, Guillermit H, Mercier B, Audrezet MP, Ferec C (1991) A polymorphism in intron 20 of the CFTR gene. Nucleic Acids Res 19:5453

    CAS  PubMed  Google Scholar 

  • Reis A, Bremer S, Schlösser M, Dueck M, Böhm I, Hundrieser J, Macek M, Stuhrmann M, Wagner M, Dörk T, Schnieders F, Posselt H-G, Wahn U, Reiss J, Trefz FK, Tümmler B, Krawczak M, Schmidtke J (1990) Distribution patterns of the ΔF508 mutation in the CFTR gene on CF-linked marker haplotypes in the German population. Hum Genet 85:421–422

    CAS  PubMed  Google Scholar 

  • Riordan JR, Rommens JM, Kerem BS, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou J-L, Drumm ML, Iannuzzi ML, Collins FS, Tsui L-C (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  • Rommens J, Iannuzzi MC, Kerem BS, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N, Zsiga M, Buchwald M, Riordan JR, Tsui L-C, Collins FS (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science 245:1059–1065

    CAS  PubMed  Google Scholar 

  • Rommens J, Kerem BS, Greer W, Chang P, Tsui L-C, Ray P (1990) Rapid nonradioactive detection of the major CF mutation. Am J Hum Genet 46:395–396

    CAS  PubMed  Google Scholar 

  • Rosenbaum V, Riesner D (1987) Temperature-gradient gel electrophoresis. Thermodynamic analysis of nucleic acids and proteins in purified form and in cellular extracts. Biophys Chem 26:235–246

    Article  CAS  PubMed  Google Scholar 

  • Rosenbloom CL, Kerem BS, Rommens JM, Tsui L-C, Wainwright B, Williamson R, O'Brien WED, Beaudet AL (1989) DNA amplification for detection of the XV-2c polymorphism linked to cystic fibrosis. Nucleic Acids Res 17:7117

    CAS  PubMed  Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    CAS  PubMed  Google Scholar 

  • Vidaud M, Fanen P, Martin J, Ghanem N, Nicolas S, Goossens M (1990) Three mutations in the CFTR gene in French cystic fibrosis patients: identification by denaturing gradient gel electrophoresis. Hum Genet 85:446–449

    CAS  PubMed  Google Scholar 

  • Zielenski J, Rozmahel R, Bozon D, Kerem B-S, Grzelczak Z, Riordan JR, Rommens J, Tsui L-C (1991a) Genomic DNA sequences of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10:214–228

    CAS  PubMed  Google Scholar 

  • Zielenski J, Bozon D, Kerem B-S, Markiewicz D, Durie P, Rommens JM, Tsui L-C (1991b) Identification of mutations in exons 1 through 8 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Genomics 10:229–235

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dörk, T., Neumann, T., Wulbrand, U. et al. Intra- and extragenic marker haplotypes of CFTR mutations in cystic fibrosis families. Hum Genet 88, 417–425 (1992). https://doi.org/10.1007/BF00215676

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00215676

Keywords

Navigation