Skip to main content

Cough Sensors. I. Physiological and Pharmacological Properties of the Afferent Nerves Regulating Cough

  • Chapter
Book cover Pharmacology and Therapeutics of Cough

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 187))

Abstract

The afferent nerves regulating cough have been reasonably well defined. The selective effects of general anesthesia on C-fiber-dependent cough and the opposing effects of C-fiber subtypes in cough have led to some uncertainty about their regulation of this defensive reflex. But a role for C-fibers in cough seems almost certain, given the unique pharmacological properties of these unmyelinated vagal afferent nerves and the ability of many C-fiber-selective stimulants to evoke cough. The role of myelinated laryngeal, tracheal, and bronchial afferent nerve subtypes that can be activated by punctate mechanical stimuli, inhaled particulates, accumulated secretions, and acid has also been demonstrated. These “cough receptors” are distinct from the slowly and rapidly adapting intrapulmonary stretch receptors responding to lung inflation. Indeed, intrapulmonary rapidly and slowly adapting receptors and pulmonary C-fibers may play no role or a nonessential role in cough, or might even actively inhibit cough upon activation. A critical review of the studies of the afferent nerve subtypes most often implicated in cough is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adcock JJ, Douglas GJ, Garabette M, Gascoigne M, Beatch G, Walker M, Page CP (2003) RSD931, a novel anti-tussive agent acting on airway sensory nerves. Br J Pharmacol 138: 407–416

    Article  PubMed  CAS  Google Scholar 

  • Adrian ED (1933) Afferent impulses in the vagus and their effect on respiration. J Physiol 79: 332–358

    PubMed  CAS  Google Scholar 

  • Armstrong DJ, Luck JC (1974) A comparative study of irritant and type J receptors in the cat. Respir Physiol 21:47–60

    Article  PubMed  CAS  Google Scholar 

  • Baluk P, Nadel JA, McDonald DM (1992) Substance P-immunoreactive sensory axons in the rat respiratory tract: a quantitative study of their distribution and role in neurogenic inflammation. J Comp Neurol 319:586–598

    Article  PubMed  CAS  Google Scholar 

  • Barry PW, Mason NP, Riordan M, O'Callaghan C (1997) Cough frequency and cough-receptor sensitivity are increased in man at altitude. Clin Sci (Lond) 93:181–186

    CAS  Google Scholar 

  • Belvisi MG, Bolser DC (2002) Summary: animal models for cough. Pulm Pharmacol Ther 15: 249–250

    Article  PubMed  CAS  Google Scholar 

  • Bergren DR (1997) Sensory receptor activation by mediators of defense reflexes in guinea-pig lungs. Respir Physiol 108:195–204

    Article  PubMed  CAS  Google Scholar 

  • Bergren DR (2001) Enhanced lung C-fiber responsiveness in sensitized adult guinea pigs exposed to chronic tobacco smoke. J Appl Physiol 91:1645–1654

    PubMed  CAS  Google Scholar 

  • Bergren DR, Kincaid RJ (1984) Rapidly-adapting receptor activity and intratracheal pressure in guinea pigs. II. Action of aspirin and salicylic acid in antagonizing mediators of allergic asthma. Prostaglandins Leukot Med 16:163–171

    Article  PubMed  CAS  Google Scholar 

  • Bergren DR, Myers DL (1984) Rapidly-adapting receptor activity and intratracheal pressure in guinea pigs. I. Action of leukotriene C4. Prostaglandins Leukot Med 16:147–161

    Article  PubMed  CAS  Google Scholar 

  • Bergren DR, Peterson DF (1993) Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting recseptors? J Physiol 464:681–698

    PubMed  CAS  Google Scholar 

  • Bergren DR, Sampson SR (1982) Characterization of intrapulmonary, rapidly adapting receptors of guinea pigs. Respir Physiol 47:83–95

    Article  PubMed  CAS  Google Scholar 

  • Bergren DR, Gustafson JM, Myers DL (1984) Effect of prostaglandin F2 alpha on pulmonary rapidly-adapting-receptors in the guinea pig. Prostaglandins 27:391–405

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, Aziz SM, Chapman RW (1991) Ruthenium red decreases capsaicin and citric acidinduced cough in guinea pigs. Neurosci Lett 126:131–133

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O'Reilly S, Chapman RW, Kreutner W, Egan RW, Hey JA (1994) Peripheral and central sites of action of GABA-B agonists to inhibit the cough reflex in the cat and guinea pig. Br J Pharmacol 113:1344–1348

    PubMed  CAS  Google Scholar 

  • Bolser DC, DeGennaro FC, O'Reilly S, McLeod RL, Hey JA (1997) Central antitussive activity of the NK1 and NK2 tachykinin receptor antagonists, CP-99,994 and SR 48968, in the guinea-pig and cat. Br J Pharmacol 121:165–170

    Article  PubMed  CAS  Google Scholar 

  • Bolser DC, Poliacek I, Jakus J, Fuller DD, Davenport PW (2006) Neurogenesis of cough, other airway defensive behaviors and breathing: a holarchical system? Respir Physiol Neurobiol 152:255–265

    Article  PubMed  Google Scholar 

  • Bonham AC, Joad JP (1991) Neurones in commissural nucleus tractus solitarii required for full expression of the pulmonary C fibre reflex in rat. J Physiol 441:95–112

    PubMed  CAS  Google Scholar 

  • Bonham AC, McCrimmon DR (1990) Neurones in a discrete region of the nucleus tractus solitarius are required for the Breuer-Hering reflex in rat. J Physiol 427:261–280

    PubMed  CAS  Google Scholar 

  • Bonham AC, Kappagoda CT, Kott KS, Joad JP (1995) Exposing young guinea pigs to sidestream tobacco smoke decreases rapidly adapting receptor responsiveness. J Appl Physiol 78: 1412–1420

    PubMed  CAS  Google Scholar 

  • Bonham AC, Kott KS, Joad JP (1996) Sidestream smoke exposure enhances rapidly adapting receptor responses to substance P in young guinea pigs. J Appl Physiol 81:1715–1722

    PubMed  CAS  Google Scholar 

  • Burki NK, Dale WJ, Lee LY (2005) Intravenous adenosine and dyspnea in humans. J Appl Physiol 98:180–185

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ (2007) Encoding of the cough reflex. Pulm Pharmacol Ther 20:396–401

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ (2008) The cough reflex in animals: relevance to human cough research. Lung 186:S23–S28

    Article  PubMed  Google Scholar 

  • Canning BJ, Reynolds SM, Mazzone SB (2001) Multiple mechanisms of reflex bronchospasm in guinea pigs. J Appl Physiol 91:2642–2653

    PubMed  CAS  Google Scholar 

  • Canning BJ, Mazzone SB, Meeker SN, Mori N, Reynolds SM, Undem BJ (2004) Identification of the tracheal and laryngeal afferent neurones mediating cough in anaesthetized guinea-pigs. J Physiol 557:543–558

    Article  PubMed  CAS  Google Scholar 

  • Canning BJ, Farmer DG, Mori N (2006a) Mechanistic studies of acid-evoked coughing in anesthetized guinea pigs. Am J Physiol Regul Integr Comp Physiol 291:R454–R463

    CAS  Google Scholar 

  • Canning BJ, Mori N, Mazzone SB (2006b) Vagal afferent nerves regulating the cough reflex. Respir Physiol Neurobiol 152:223–242

    Article  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  PubMed  CAS  Google Scholar 

  • Chang AB, Phelan PD, Roberts RG, Robertson CF (1996) Capsaicin cough receptor sensitivity test in children. Eur Respir J 9:2220–2223

    Article  PubMed  CAS  Google Scholar 

  • Chuaychoo B, Lee MG, Kollarik M, Undem BJ (2005) Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs. Pulm Pharmacol Ther 18:269–276

    Article  PubMed  CAS  Google Scholar 

  • Chuaychoo B, Lee MG, Kollarik M, Pullmann R, Jr., Undem BJ (2006) Evidence for both adenosine A1 and A2A receptors activating single vagal sensory C-fibres in guinea pig lungs. J Physiol 575:481–490

    Article  PubMed  CAS  Google Scholar 

  • Cohn MA, Baier H, Wanner A (1978) Failure of hypoxic pulmonary vasoconstriction in the canine asthma model. Effect of prostaglandin inhibitors. J Clin Invest 61:1463–1470

    Article  PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JC (1977) Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir Physiol 29:125–142

    Article  PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JC, Luck JC (1965) Pulmonary afferent fibres of small diameter stimulated by capsaicin and by hyperinflation of the lungs. J Physiol 179:248–262

    PubMed  CAS  Google Scholar 

  • Coleridge HM, Coleridge JC, Roberts AM (1983) Rapid shallow breathing evoked by selective stimulation of airway C fibres in dogs. J Physiol 340:415–433

    PubMed  CAS  Google Scholar 

  • Coleridge JC, Coleridge HM (1984) Afferent vagal C fibre innervation of the lungs and airways and its functional significance. Rev Physiol Biochem Pharmacol 99:1–110

    Article  PubMed  CAS  Google Scholar 

  • Coleridge JC, Coleridge HM, Roberts AM, Kaufman MP, Baker DG (1982) Tracheal contraction and relaxation initiated by lung and somatic afferents in dogs. J Appl Physiol 52:984–990

    PubMed  CAS  Google Scholar 

  • Daoui S, Cognon C, Naline E, Emonds-Alt X, Advenier C (1998) Involvement of tachykinin NK3 receptors in citric acid-induced cough and bronchial responses in guinea pigs. Am J Respir Crit Care Med 158:42–48

    PubMed  CAS  Google Scholar 

  • Davies A, Nadal JA, Weinmann G (1984) Effect of changes in airway pressure on breathing pattern in conscious dogs. Q J Exp Physiol 69:145–153

    PubMed  CAS  Google Scholar 

  • Davies A, Pirie L, Eyre-Todd RA (1996) Adaptation of pulmonary receptors in the spontaneously breathing anaesthetized rat. Eur Respir J 9:1637–1642

    Article  PubMed  CAS  Google Scholar 

  • Davies RO, Kubin L (1986) Projection of pulmonary rapidly adapting receptors to the medulla of the cat: an antidromic mapping study. J Physiol 373:63–86

    PubMed  CAS  Google Scholar 

  • Davies RO, Kubin L, Pack AI (1987) Pulmonary stretch receptor relay neurones of the cat: location and contralateral medullary projections. J Physiol 383:571–585

    PubMed  CAS  Google Scholar 

  • Deep V, Singh M, Ravi K (2001) Role of vagal afferents in the reflex effects of capsaicin and lobeline in monkeys. Respir Physiol 125:155–168

    Article  PubMed  CAS  Google Scholar 

  • Delpierre S, Grimaud C, Jammes Y, Mei N (1981) Changes in activity of vagal bronchopulmonary C fibres by chemical and physical stimuli in the cat. J Physiol 316:61–74

    PubMed  CAS  Google Scholar 

  • De Proost I, Pintelon I, Brouns I, Timmermans JP, Adriaensen D (2007) Selective visualisation of sensory receptors in the smooth muscle layer of ex-vivo airway whole-mounts by styryl pyridinium dyes. Cell Tissue Res 329:421–431

    Article  PubMed  CAS  Google Scholar 

  • D'Erchia AM, Gissi C, Pesole G, Saccone C, Arnason U (1996) The guinea-pig is not a rodent. Nature 381:597–600

    Article  PubMed  Google Scholar 

  • Dey RD, Altemus JB, Zervos I, Hoffpauir J (1990) Origin and colocalization of CGRP- and SP- reactive nerves in cat airway epithelium. J Appl Physiol 68:770–778

    PubMed  CAS  Google Scholar 

  • Dicpinigaitis PV (2007) Experimentally induced cough. Pulm Pharmacol Ther 20:319–324

    Article  PubMed  CAS  Google Scholar 

  • El-Hashim AZ, Amine SA (2005) The role of substance P and bradykinin in the cough reflex and bronchoconstriction in guinea-pigs. Eur J Pharmacol 513:125–133

    Article  PubMed  CAS  Google Scholar 

  • Ezure K, Otake K, Lipski J, She RB (1991) Efferent projections of pulmonary rapidly adapting receptor relay neurons in the cat. Brain Res 564:268–278

    Article  PubMed  CAS  Google Scholar 

  • Ezure K, Tanaka I, Saito Y, Otake K (2002) Axonal projections of pulmonary slowly adapting receptor relay neurons in the rat. J Comp Neurol 446:81–94

    Article  PubMed  Google Scholar 

  • Forsberg K, Karlsson JA, Theodorsson E, Lundberg JM, Persson CG (1988) Cough and bronchoconstriction mediated by capsaicin-sensitive sensory neurons in the guinea-pig. Pulm Pharmacol 1:33–39

    Article  PubMed  CAS  Google Scholar 

  • Fox AJ, Barnes PJ, Urban L, Dray A (1993) An in vitro study of the properties of single vagal afferents innervating guinea-pig airways. J Physiol 469:21–35

    PubMed  CAS  Google Scholar 

  • Fox AJ, Barnes PJ, Dray A (1995) Stimulation of guinea-pig tracheal afferent fibres by nonisosmotic and low-chloride stimuli and the effect of frusemide. J Physiol 482 (Pt 1):179–187

    PubMed  CAS  Google Scholar 

  • Fox AJ, Lalloo UG, Belvisi MG, Bernareggi M, Chung KF, Barnes PJ (1996) Bradykinin-evoked sensitization of airway sensory nerves: a mechanism for ACE-inhibitor cough. Nat Med 2: 814–817

    Article  PubMed  CAS  Google Scholar 

  • Fujimura M, Sakamoto S, Kamio Y, Matsuda T (1992) Effects of methacholine induced bronchoconstriction and procaterol induced bronchodilation on cough receptor sensitivity to inhaled capsaicin and tartaric acid. Thorax 47:441–445

    PubMed  CAS  Google Scholar 

  • Fujimura M, Sakamoto S, Kamio Y, Bando T, Kurashima K, Matsuda T (1993) Effect of inhaled procaterol on cough receptor sensitivity to capsaicin in patients with asthma or chronic bronchitis and in normal subjects. Thorax 48:615–618

    PubMed  CAS  Google Scholar 

  • Gatti R, Andre E, Amadesi S, Dinh TQ, Fischer A, Bunnett NW, Harrison S, Geppetti P, Trevisani M (2006) Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs. J Appl Physiol 101:506–511

    Article  PubMed  CAS  Google Scholar 

  • Gaylor JB (1934) The intrinsic nervous mechanism of the human lung. Brain 57:143–160

    Article  Google Scholar 

  • Gestreau C, Bianchi AL, Grelot L (1997) Differential brainstem Fos-like immunoreactivity after laryngeal-induced coughing and its reduction by codeine. J Neurosci 17:9340–9352

    PubMed  CAS  Google Scholar 

  • Girard V, Naline E, Vilain P, Emonds-Alt X, Advenier C (1995) Effect of the two tachykinin antagonists, SR 48968 and SR 140333, on cough induced by citric acid in the unanaesthetized guinea pig. Eur Respir J 8:1110–1114

    Article  PubMed  CAS  Google Scholar 

  • Green JF, Kaufman MP (1990) Pulmonary afferent control of breathing as end-expiratory lung volume decreases. J Appl Physiol 68:2186–2194

    PubMed  CAS  Google Scholar 

  • Green JF, Schertel ER, Coleridge HM, Coleridge JC (1986) Effect of pulmonary arterial PCO2 on slowly adapting pulmonary stretch receptors. J Appl Physiol 60:2048–2055

    PubMed  CAS  Google Scholar 

  • Groneberg DA, Niimi A, Dinh QT, Cosio B, Hew M, Fischer A, Chung KF (2004) Increased expression of transient receptor potential vanilloid-1 in airway nerves of chronic cough. Am J Respir Crit Care Med 170:1276–1280

    Article  PubMed  Google Scholar 

  • Gu Q, Lee LY (2002) Alveolar hypercapnia augments pulmonary C-fiber responses to chemical stimulants: role of hydrogen ion. J Appl Physiol 93:181–188

    PubMed  CAS  Google Scholar 

  • Gu Q, Kwong K, Lee LY (2003) Ca2+ transient evoked by chemical stimulation is enhanced by PGE2 in vagal sensory neurons: role of cAMP/PKA signaling pathway. J Neurophysiol 89:1985–1993

    Article  PubMed  CAS  Google Scholar 

  • Hanacek J, Davies A, Widdicombe JG (1984) Influence of lung stretch receptors on the cough reflex in rabbits. Respiration 45:161–168

    PubMed  CAS  Google Scholar 

  • Hara J, Fujimura M, Ueda A, Myou S, Oribe Y, Ohkura N, Kita T, Yasui M, Kasahara K (2008) Effect of pressure stress applied to the airway on cough-reflex sensitivity in Guinea pigs. Am J Respir Crit Care Med 177:585–592

    Article  PubMed  Google Scholar 

  • Hargreaves M, Ravi K, Kappagoda CT (1993) Effect of bradykinin on respiratory rate in anaesthetized rabbits; role of rapidly adapting receptors. J Physiol 468:501–513

    PubMed  CAS  Google Scholar 

  • Haxhiu MA, Erokwu B, Dreshaj IA (1997) The role of excitatory amino acids in airway reflex responses in anesthetized dogs. J Auton Nerv Syst 67:192–199

    Article  PubMed  CAS  Google Scholar 

  • Haxhiu MA, Chavez JC, Pichiule P, Erokwu B, Dreshaj IA (2000) The excitatory amino acid glutamate mediates reflexly increased tracheal blood flow and airway submucosal gland secretion. Brain Res 883:77–86

    Article  PubMed  CAS  Google Scholar 

  • Ho CY, Gu Q, Lin YS, Lee LY (2001) Sensitivity of vagal afferent endings to chemical irritants in the rat lung. Respir Physiol 127:113–124

    Article  PubMed  CAS  Google Scholar 

  • House A, Celly C, Skeans S, Lamca J, Egan RW, Hey JA, Chapman RW (2004) Cough reflex in allergic dogs. Eur J Pharmacol 492:251–258

    Article  PubMed  CAS  Google Scholar 

  • Hunter DD, Undem BJ (1999) Identification and substance P content of vagal afferent neurons innervating the epithelium of the guinea pig trachea. Am J Respir Crit Care Med 159: 1943–1948

    PubMed  CAS  Google Scholar 

  • Jakus J, Poliacek I, Halasova E, Murin P, Knocikova J, Tomori Z, Bolser DC (2008) Brainstem circuitry of tracheal-bronchial cough: C-FOS study in anesthetized cats. Respir Physiol Neurobiol 160:289–300

    Article  PubMed  CAS  Google Scholar 

  • Jia Y, McLeod RL, Wang X, Parra LE, Egan RW, Hey JA (2002) Anandamide induces cough in conscious guinea-pigs through VR1 receptors. Br J Pharmacol 137:831–836

    Article  PubMed  CAS  Google Scholar 

  • Joad JP, Kott KS, Bonham AC (1997) Nitric oxide contributes to substance P-induced increases in lung rapidly adapting receptor activity in guinea-pigs. J Physiol 503(Pt 3):635–643

    Article  PubMed  CAS  Google Scholar 

  • Joad JP, Munch PA, Bric JM, Evans SJ, Pinkerton KE, Chen CY, Bonham AC (2004) Passive smoke effects on cough and airways in young guinea pigs: role of brainstem substance P. Am J Respir Crit Care Med 169:499–504

    Article  PubMed  Google Scholar 

  • Jonzon A, Pisarri TE, Coleridge JC, Coleridge HM (1986) Rapidly adapting receptor activity in dogs is inversely related to lung compliance. J Appl Physiol 61:1980–1987

    PubMed  CAS  Google Scholar 

  • Kalia M, Richter D (1985) Morphology of physiologically identified slowly adapting lung stretch receptor afferents stained with intra-axonal horseradish peroxidase in the nucleus of the tractus solitarius of the cat. I. A light microscopic analysis. J Comp Neurol 241:503–520

    Article  PubMed  CAS  Google Scholar 

  • Kalia M, Richter D (1988) Rapidly adapting pulmonary receptor afferents. II. Fine structure and synaptic organization of central terminal processes in the nucleus of the tractus solitarius. J Comp Neurol 274:574–594

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Takahashi Y (2006) Involvement of ionotropic purinergic receptors in the histamineinduced enhancement of the cough reflex sensitivity in guinea pigs. Eur J Pharmacol 547: 160–164

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Iwamoto Y, Suzuki T, Misawa M, Nagase H, Kasuya Y (1993) Antitussive effects of naltrindole, a selective delta-opioid receptor antagonist, in mice and rats. Eur J Pharmacol 249:161–165

    Article  PubMed  CAS  Google Scholar 

  • Kamei J, Takahashi Y, Yoshikawa Y, Saitoh A (2005) Involvement of P2X receptor subtypes in ATP-induced enhancement of the cough reflex sensitivity. Eur J Pharmacol 528:158–161

    Article  PubMed  CAS  Google Scholar 

  • Karlsson JA, Fuller RW (1999) Pharmacological regulation of the cough reflex – from experimental models to antitussive effects in Man. Pulm Pharmacol Ther 12:215–228

    Article  PubMed  CAS  Google Scholar 

  • Karlsson JA, Zackrisson C, Lundberg JM (1991a) Hyperresponsiveness to tussive stimuli in cigarette smoke-exposed guinea-pigs: a role for capsaicin-sensitive, calcitonin gene-related peptidecontaining nerves. Acta Physiol Scand 141:445–454

    CAS  Google Scholar 

  • Karlsson JA, Hansson L, Wollmer P, Dahlback M (1991b) Regional sensitivity of the respiratory tract to stimuli causing cough and reflex bronchoconstriction. Respir Med 85(Suppl A):47–50

    Article  Google Scholar 

  • Karlsson JA, Sant'Ambrogio FB, Forsberg K, Palecek F, Mathew OP, Sant'Ambrogio G (1993) Respiratory and cardiovascular effects of inhaled and intravenous bradykinin, PGE2, and PGF2 alpha in dogs. J Appl Physiol 74:2380–2386

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Coleridge HM, Coleridge JC, Baker DG (1980) Bradykinin stimulates afferent vagal C-fibers in intrapulmonary airways of dogs. J Appl Physiol 48:511–517

    PubMed  CAS  Google Scholar 

  • Knowlton GC, Larrabee MG (1946) A unitary analysis of pulmonary volume receptors. Am J Physiol Lung Cell Mol Physiol 147:100–114

    Google Scholar 

  • Kollarik M, Undem BJ (2002) Mechanisms of acid-induced activation of airway afferent nerve fibres in guinea-pig. J Physiol 543:591–600

    Article  PubMed  CAS  Google Scholar 

  • Kollarik M, Dinh QT, Fischer A, Undem BJ (2003) Capsaicin-sensitive and -insensitive vagal bronchopulmonary C-fibres in the mouse. J Physiol 551:869–879

    Article  PubMed  CAS  Google Scholar 

  • Korpas J, Widdicombe JG, Vrabec M, Kudlicka J (1993) Effect of experimental lung oedema on cough sound creation. Respir Med 87:55–59

    Article  PubMed  CAS  Google Scholar 

  • Kubin L, Kimura H, Davies RO (1991) The medullary projections of afferent bronchopulmonary C fibres in the cat as shown by antidromic mapping. J Physiol 435:207–228

    PubMed  CAS  Google Scholar 

  • Kubin L, Alheid GF, Zuperku EJ, McCrimmon DR (2006) Central pathways of pulmonary and lower airway vagal afferents. J Appl Physiol 101:618–627

    Article  PubMed  Google Scholar 

  • Kummer W, Fischer A, Kurkowski R, Heym C (1992) The sensory and sympathetic innervation of guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:715–737

    Article  PubMed  CAS  Google Scholar 

  • Kunz AL, Kawashiro T, Scheid P (1976) Study of CO2 sensitive vagal afferents in the cat lung. Respir Physiol 27:347–355

    Article  PubMed  CAS  Google Scholar 

  • Kwong K, Carr MJ, Gibbard A, Savage TJ, Singh K, Jing J, Meeker S, Undem BJ (2008) Voltagegated sodium channels in nociceptive versus non-nociceptive nodose vagal sensory neurons innervating guinea pig lungs. J Physiol 586:1321–1336

    Article  PubMed  CAS  Google Scholar 

  • Lalloo UG, Fox AJ, Belvisi MG, Chung KF, Barnes PJ (1995) Capsazepine inhibits cough induced by capsaicin and citric acid but not by hypertonic saline in guinea pigs. J Appl Physiol 79: 1082–1087

    PubMed  CAS  Google Scholar 

  • Lamb JP, Sparrow MP (2002) Three-dimensional mapping of sensory innervation with substance p in porcine bronchial mucosa: comparison with human airways. Am J Respir Crit Care Med 166:1269–1281

    Article  PubMed  Google Scholar 

  • Larsell O (1921) Nerve termiunation in the lung of the rabbit. J Comp Neurol 33:105–131

    Article  Google Scholar 

  • Larsell O (1922) The ganglia, plexuses and nerve-termination of the mammalian lung and pleura pulmonis. J Comp Neurol 35:97–132

    Article  Google Scholar 

  • Laude EA, Higgins KS, Morice AH (1993) A comparative study of the effects of citric acid, capsaicin and resiniferatoxin on the cough challenge in guinea-pig and man. Pulm Pharmacol 6:171–175

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Morton RF (1993) Histamine enhances vagal pulmonary C-fiber responses to capsaicin and lung inflation. Respir Physiol 93:83–96

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Pisarri TE (2001) Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol 125:47–65

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Weinreich D, Undem BJ (2005) Effect of olvanil and anandamide on vagal C-fiber subtypes in guinea pig lung. Br J Pharmacol 146:596–603

    Article  PubMed  CAS  Google Scholar 

  • Leung SY, Niimi A, Williams AS, Nath P, Blanc FX, Dinh QT, Chung KF (2007) Inhibition of citric acid- and capsaicin-induced cough by novel TRPV-1 antagonist, V112220, in guinea-pig. Cough 3:10

    Article  PubMed  Google Scholar 

  • Lewis CA, Ambrose C, Banner K, Battram C, Butler K, Giddings J, Mok J, Nasra J, Winny C, Poll C (2007) Animal models of cough: literature review and presentation of a novel cigarette smoke-enhanced cough model in the guinea-pig. Pulm Pharmacol Ther 20:325–333

    Article  PubMed  CAS  Google Scholar 

  • Lin RL, Gu Q, Lin YS, Lee LY (2005) Stimulatory effect of CO2 on vagal bronchopulmonary C-fiber afferents during airway inflammation. J Appl Physiol 99:1704–1711

    Article  PubMed  Google Scholar 

  • Lin YS, Lee LY (2002) Stimulation of pulmonary vagal C-fibres by anandamide in anaesthetized rats: role of vanilloid type 1 receptors. J Physiol 539:947–955

    Article  PubMed  CAS  Google Scholar 

  • Lipski J, Ezure K, Wong She RB (1991) Identification of neurons receiving input from pulmonary rapidly adapting receptors in the cat. J Physiol 443:55–77

    PubMed  CAS  Google Scholar 

  • Liu Q, Fujimura M, Tachibana H, Myou S, Kasahara K, Yasui M (2001) Characterization of increased cough sensitivity after antigen challenge in guinea pigs. Clin Exp Allergy 31:474–484

    Article  PubMed  CAS  Google Scholar 

  • Malik SK, Kher V, Kumar B, Kaur S (1978) Impaired cough-receptor function in leprosy. Lancet 1:1094–1095

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S (1997) The changes in pulmonary C-fiber activity and lung mechanics induced by vagal stimulation in rabbits. Life Sci 61:2189–2195

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Shimizu T, Kanno T, Yamasaki M, Nagayama T (1990) Effects of histamine on slowly adapting pulmonary stretch receptor activities in vagotomized rabbits. Jpn J Physiol 40:737–752

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, Canning BJ (2002) Synergistic interactions between airway afferent nerve subtypes mediating reflex bronchospasm in guinea pigs. Am J Physiol Regul Integr Comp Physiol 283:R86–98

    PubMed  CAS  Google Scholar 

  • Mazzone SB, McGovern AE (2006) Na+−K+−2Cl- cotransporters and Cl- channels regulate citric acid cough in guinea pigs. J Appl Physiol 101:635–643

    Article  PubMed  CAS  Google Scholar 

  • Mazzone SB, Mori N, Canning BJ (2005) Synergistic interactions between airway afferent nerve subtypes regulating the cough reflex in guinea-pigs. J Physiol 569:559–573

    Article  PubMed  CAS  Google Scholar 

  • McAlexander MA, Undem BJ (2000) Potassium channel blockade induces action potential generation in guinea-pig airway vagal afferent neurones. J Auton Nerv Syst 78:158–164

    Article  PubMed  CAS  Google Scholar 

  • McAlexander MA, Myers AC, Undem BJ (1999) Adaptation of guinea-pig vagal airway afferent neurones to mechanical stimulation. J Physiol 521(Pt 1):239–247

    Article  PubMed  CAS  Google Scholar 

  • McDonald DM, Mitchell RA, Gabella G, Haskell A (1988) Neurogenic inflammation in the rat trachea. II. Identity and distribution of nerves mediating the increase in vascular permeability. J Neurocytol 17:605–628

    Article  PubMed  CAS  Google Scholar 

  • McLeod RL, Parra LE, Mutter JC, Erickson CH, Carey GJ, Tulshian DB, Fawzi AB, Smith-Torhan A, Egan RW, Cuss FM, Hey JA (2001) Nociceptin inhibits cough in the guinea-pig by activation of ORL(1) receptors. Br J Pharmacol 132:1175–1178

    Article  PubMed  CAS  Google Scholar 

  • Mills JE, Sellick H, Widdicombe JG (1969) Activity of lung irritant receptors in pulmonary microembolism, anaphylaxis and drug-induced bronchoconstrictions. J Physiol 203:337–357

    PubMed  CAS  Google Scholar 

  • Mills JE, Sellick H, Widdicombe JG (1970) Epithelial irritant receptors in the lungs. In: Ruth P (ed) Breathing: Hering-Breuer centenary symposium. Churchill, London, pp 77–99

    Chapter  Google Scholar 

  • Mohammed SP, Higenbottam TW, Adcock JJ (1993) Effects of aerosol-applied capsaicin, histamine and prostaglandin E2 on airway sensory receptors of anaesthetized cats. J Physiol 469: 51–66

    PubMed  CAS  Google Scholar 

  • Morikawa T, Gallico L, Widdicombe JG (1997) Actions of moguisteine on cough and pulmonary rapidly adapting receptor activity in the guinea pig. Pharmacol Res 35:113–118

    Article  PubMed  CAS  Google Scholar 

  • Mutoh T, Bonham AC, Kott KS, Joad JP (1999) Chronic exposure to sidestream tobacco smoke augments lung C-fiber responsiveness in young guinea pigs. J Appl Physiol 87:757–768

    PubMed  CAS  Google Scholar 

  • Mutolo D, Bongianni F, Fontana GA, Pantaleo T (2007) The role of excitatory amino acids and substance P in the mediation of the cough reflex within the nucleus tractus solitarii of the rabbit. Brain Res Bull 74:284–293

    Article  PubMed  CAS  Google Scholar 

  • Myers AC, Kajekar R, Undem BJ (2002) Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J Physiol Lung Cell Mol Physiol 282:L775–L781

    PubMed  CAS  Google Scholar 

  • O'Connell F, Thomas VE, Fuller RW, Pride NB, Karlsson JA (1994) Effect of clonidine on induced cough and bronchoconstriction in guinea pigs and healthy humans. J Appl Physiol 76: 1082–1087

    PubMed  Google Scholar 

  • Ohi Y, Yamazaki H, Takeda R, Haji A (2004) Phrenic and iliohypogastric nerve discharges during tussigenic stimulation in paralyzed and decerebrate guinea pigs and rats. Brain Res 1021: 119–127

    Article  PubMed  CAS  Google Scholar 

  • Ohi Y, Yamazaki H, Takeda R, Haji A (2005) Functional and morphological organization of the nucleus tractus solitarius in the fictive cough reflex of guinea pigs. Neurosci Res 53:201–209

    Article  PubMed  Google Scholar 

  • Olgiati R, Birch S, Rao A, Wanner A (1981) Differential effects of methacholine and antigen challenge on gas exchange in allergic subjects. J Allergy Clin Immunol 67:325–329

    Article  PubMed  CAS  Google Scholar 

  • Otake K, Ezure K, Lipski J, Wong She RB (1992) Projections from the commissural subnucleus of the nucleus of the solitary tract: an anterograde tracing study in the cat. J Comp Neurol 324:365–378

    Article  PubMed  CAS  Google Scholar 

  • Paintal AS (1969) Mechanism of stimulation of type J pulmonary receptors. J Physiol 203:511–532

    PubMed  CAS  Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159–227

    PubMed  CAS  Google Scholar 

  • Pinto A, Yanai M, Sekizawa K, Aikawa T, Sasaki H (1995) Conditioned enhancement of cough response in awake guinea pigs. Int Arch Allergy Immunol 108:95–98

    Article  PubMed  CAS  Google Scholar 

  • Plevkova J, Kollarik M, Brozmanova M, Revallo M, Varechova S, Tatar M (2004) Modulation of experimentally-induced cough by stimulation of nasal mucosa in cats and guinea pigs. Respir Physiol Neurobiol 142:225–235

    Article  PubMed  CAS  Google Scholar 

  • Polacek H, Korpas J, Tatar M, Plank L, Pullmann R (1986) Study of cough in anaesthetized cats with experimental pulmonary oedema. Physiol Bohemoslov 35:481–489

    PubMed  CAS  Google Scholar 

  • Raj H, Singh VK, Anand A, Paintal AS (1995) Sensory origin of lobeline-induced sensations: a correlative study in man and cat. J Physiol 482 (Pt 1):235–246

    PubMed  CAS  Google Scholar 

  • Rao SV, Sant'Ambrogio FB, Sant'Ambrogio G (1981) Respiratory reflexes evoked by tracheal distension. J Appl Physiol 50:421–427

    PubMed  CAS  Google Scholar 

  • Riccio MM, Myers AC, Undem BJ (1996) Immunomodulation of afferent neurons in guinea-pig isolated airway. J Physiol 491(Pt 2):499–509

    PubMed  CAS  Google Scholar 

  • Ricco MM, Kummer W, Biglari B, Myers AC, Undem BJ (1996) Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways. J Physiol 496(Pt 2):521–530

    PubMed  Google Scholar 

  • Sano M, Tsubone H, Sugano S (1992) Vagal afferent activities and respiratory reflexes during drug-induced bronchoconstriction in the guinea pig. J Vet Med Sci 54:989–998

    PubMed  CAS  Google Scholar 

  • Sellick H, Widdicombe JG (1969) The activity of lung irritant receptors during pneumothorax, hyperpnoea and pulmonary vascular congestion. J Physiol 203:359–381

    PubMed  CAS  Google Scholar 

  • Sellick H, Widdicombe JG (1971) Stimulation of lung irritant receptors by cigarette smoke, carbon dust, and histamine aerosol. J Appl Physiol 31:15–19

    PubMed  CAS  Google Scholar 

  • Shannon R, Baekey DM, Morris KF, Nuding SC, Segers LS, Lindsey BG (2004) Production of reflex cough by brainstem respiratory networks. Pulm Pharmacol Ther 17:369–376

    Article  PubMed  CAS  Google Scholar 

  • Stone RA, Worsdell YM, Fuller RW, Barnes PJ (1993) Effects of 5-hydroxytryptamine and 5-hydroxytryptophan infusion on the human cough reflex. J Appl Physiol 74:396–401

    PubMed  CAS  Google Scholar 

  • Tatar M, Webber SE, Widdicombe JG (1988) Lung C-fibre receptor activation and defensive re-flexes in anaesthetized cats. J Physiol 402:411–420

    PubMed  CAS  Google Scholar 

  • Tatar M, Sant'Ambrogio G, Sant'Ambrogio FB (1994) Laryngeal and tracheobronchial cough in anesthetized dogs. J Appl Physiol 76:2672–2679

    PubMed  CAS  Google Scholar 

  • Tatar M, Karcolova D, Pecova R, Brozmanova M (1996) The role of partial laryngeal denervation on the cough reflex in awake guinea-pigs, rats and rabbits. Pulm Pharmacol 9:371–372

    Article  PubMed  CAS  Google Scholar 

  • Tatar M, Pecova R, Karcolova D (1997) [Sensitivity of the cough reflex in awake guinea pigs, rats and rabbits]. Bratisl Lek Listy 98:539–543

    PubMed  CAS  Google Scholar 

  • Trevisani M, Milan A, Gatti R, Zanasi A, Harrison S, Fontana G, Morice AH, Geppetti P (2004) Antitussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 59:769–772

    Article  PubMed  CAS  Google Scholar 

  • Tsubone H, Sant'Ambrogio G, Anderson JW, Orani GP (1991) Laryngeal afferent activity and reflexes in the guinea pig. Respir Physiol 86:215–231

    Article  PubMed  CAS  Google Scholar 

  • Undem BJ, Chuaychoo B, Lee MG, Weinreich D, Myers AC, Kollarik M (2004) Subtypes of vagal afferent C-fibres in guinea-pig lungs. J Physiol 556:905–917

    Article  PubMed  CAS  Google Scholar 

  • Vidruk EH, Hahn HL, Nadel JA, Sampson SR (1977) Mechanisms by which histamine stimulates rapidly adapting receptors in dog lungs. J Appl Physiol 43:397–402

    PubMed  CAS  Google Scholar 

  • Watanabe N, Horie S, Michael GJ, Keir S, Spina D, Page CP, Priestley JV (2006) Immunohis-tochemical co-localization of transient receptor potential vanilloid (TRPV)1 and sensory neu- ropeptides in the guinea-pig respiratory system. Neuroscience 141:1533–1543

    Article  PubMed  CAS  Google Scholar 

  • Widdicombe JG (2001) The race to explore the pathway to cough: who won the silver medal? Am J Respir Crit Care Med 164:729–730

    PubMed  CAS  Google Scholar 

  • Widdicombe JG (1954a) Receptors in the trachea and bronchi of the cat. J Physiol 123:71–104

    CAS  Google Scholar 

  • Widdicombe JG (1954b) Respiratory reflexes excited by inflation of the lungs. J Physiol 123: 105–115

    CAS  Google Scholar 

  • Widdicombe JG (1954c) Respiratory reflexes from the trachea and bronchi of the cat. J Physiol 123:55–70

    CAS  Google Scholar 

  • Widdicombe JG, Kent DC, Nadel JA (1962) Mechanism of bronchoconstriction during inhalation of dust. J Appl Physiol 17:613–616

    PubMed  CAS  Google Scholar 

  • Xiang A, Uchida Y, Nomura A, Iijima H, Sakamoto T, Ishii Y, Morishima Y, Masuyama K, Zhang M, Hirano K, Sekizawa K (2002) Involvement of thromboxane A(2) in airway mucous cells in asthma-related cough. J Appl Physiol 92:763–770

    PubMed  CAS  Google Scholar 

  • Yamamoto Y, Atoji Y, Suzuki Y (1995) Nerve endings in bronchi of the dog that react with anti-bodies against neurofilament protein. J Anat 187 (Pt 1):59–65

    PubMed  Google Scholar 

  • Yamamoto Y, Ootsuka T, Atoji Y, Suzuki Y (1998) Morphological and quantitative study of the intrinsic nerve plexuses of the canine trachea as revealed by immunohistochemical staining of protein gene product 9.5. Anat Rec 250:438–447

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Sato Y, Taniguchi K (2007) Distribution of TRPV1- and TRPV2-immunoreactive afferent nerve endings in rat trachea. J Anat 211:775–783

    Article  PubMed  Google Scholar 

  • Yu J (2000) Spectrum of myelinated pulmonary afferents. Am J Physiol Regul Integr Comp Physiol 279:R2142–2148

    PubMed  CAS  Google Scholar 

  • Yu J (2005) Airway mechanosensors. Respir Physiol Neurobiol 148:217–243

    Article  PubMed  Google Scholar 

  • Yu J, Coleridge JC, Coleridge HM (1987) Influence of lung stiffness on rapidly adapting receptors in rabbits and cats. Respir Physiol 68:161–176

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Schultz HD, Goodman J, Coleridge JC, Coleridge HM, Davis B (1989) Pulmonary rapidly adapting receptors reflexly increase airway secretion in dogs. J Appl Physiol 67:682–687

    PubMed  CAS  Google Scholar 

  • Yu J, Pisarri TE, Coleridge JC, Coleridge HM (1991) Response of slowly adapting pulmonary stretch receptors to reduced lung compliance. J Appl Physiol 71:425–431

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Canning, B.J., Chou, Y.L. (2009). Cough Sensors. I. Physiological and Pharmacological Properties of the Afferent Nerves Regulating Cough. In: Chung, K.F., Widdicombe, J. (eds) Pharmacology and Therapeutics of Cough. Handbook of Experimental Pharmacology, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79842-2_2

Download citation

Publish with us

Policies and ethics