Skip to main content

Lactoferrin

Antiviral Activity of Lactoferrin

  • Chapter
Book cover Advances in Lactoferrin Research

Summary

A series of native and chemically derivatized lactoferrins (Lfs) purified from milk and colostrum were assayed in vitro for their anti-HIV and anti-HCMV-cytopathic effects in MT4 cells and fibroblasts respectively. All Lfs from bovine and human milk or colostrum were able to completely block HCMV replication as well as inhibited HIV-1 induced cytopathic effects.

Through acylation of the amino function of the lysine residues in Lf, using anhydrides of succinic acid or cis-aconitic acid, negatively charged Lf derivatives were obtained that all showed a strong antiviral activity against the HIV-1 in vitro. Acylated-Lf exhibited a 4-fold stronger antiviral effect on HIV-1 than the parent compound but the activity on HCMV was abolished.

Peptide scanning studies indicated that the native Lf as well as acylated Lf strongly bind to the V3 domain of the HIV envelope protein gp120, with Kd values in the same concentration range as the in vitro IC50. Therefore, shielding of this domain, resulting in inhibition of the virus-cell fusion and entry of the virus in MT4 cells is the likely mechanism underlying the anti-HIV activity.

In contrast, addition of positive charges to Lf through amination of the proteins resulted in an increased anti-HCMV activity and a loss of anti-HIV activity, with antianti-HCMV IC50, values in the low micromolar concentration range. The N-terminal portion of Lf appeared essential to this anti-HCMV effect. The specific distribution of positively and negatively charged domains in the molecule appears to be important in both the anti-HIV and anti-HCMV effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Plummer G: Cytomegaloviruses of man and animals. Prog Med Virol 1973; 9: 302–340.

    Google Scholar 

  2. Weller TH: The cytomegaloviruses: ubiquitous agents with protean clinical manifestations. I. N Engl J Med 1971; 285: 203–214.

    Article  CAS  Google Scholar 

  3. Skolnik PR, Kosloff BR, and Hirsch MS: Bidirectional interactions between human immunodeficiency virus type 1 and cytomegalovirus. J Infect Dis 1988; 157: 508–514.

    Article  PubMed  CAS  Google Scholar 

  4. Davis MG, Kenney SC, Kamine J, Pagano JS, and Huang ES: Immediate-early gene region of human cytomegalovirus trans-activates the promotor of human immunodeficiency virus. Proc Natl Acad Sci USA 1987; 84: 8642–8646.

    Article  PubMed  CAS  Google Scholar 

  5. Drew WL, Mintz L, Miner RC, Sands M, and Kettener B: Prevalence of cytomegalovirus infection in homosexual men. J Infect Dis 1981; 143: 188–192.

    Article  PubMed  CAS  Google Scholar 

  6. Bowden RA: Antivirals for cytomegalovirus. In: Multidisciplinary approach to understanding cytomegalovirus disease. Michelson S, and Plotkin SA (Eds.). Exerpta Medica, Amsterdam, I993,pp. 241–249.

    Google Scholar 

  7. Azad RF, Driver VB, Tanaka K, Crooke RM, and Anderson KP: Antiviral activity of a phosphorothioate oligonucleotide complementary to RNA of the human cytomegalovirus major immediate-early region. Antimicrob Agents Chemother 1993; 37: 1945–1954.

    Article  PubMed  CAS  Google Scholar 

  8. Bryant LA, and Sinclair JH: Inhibition of human cytomegalovirus major immediate early gene expression by antisense RNA expression vectors. J Gen Virol 1993; 74: 1965–1967.

    Article  PubMed  CAS  Google Scholar 

  9. Snoeck R, Neyts J and De Clercq E: Strategies for the treatment of cytomegalovirus infections. In: Multidisciplinary approach to understanding cytomegalovirus disease. Michelson S, and Plotkin SA (Eds.). Excerpta Medica, Elsevier Science Publishers B.V. Amsterdam, 1993,pp. 269–278.

    Google Scholar 

  10. Haas M, Meijer DKF, Moolenaar F, De Jong PE and De Zeeuw D: Renal drug targeting: optimalisation of renal pharmacotherapeutics. In: International Yearbook of Nephrology 1996. Andreucci VE, and Fine LG (Eds.). Oxford University Press, 1996,pp. 3–11.

    Google Scholar 

  11. Mayer U, Wagenaar E, Beijnen JH, Smit JW, Meijer DKF, van Asperen J, Borst P, and Schinkel AH: Substantial excretion of digoxin via the intestinal mucosa and prevention of long-term digoxin accumulation in the brain by the mdrla P-glycoprotein. Br J Pharmacol 1996; 119: 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  12. Kuipers ME, Huisman JO, Swart RI, de Bethune M-P, Pauwels R, De Clercq E, Schuitemaker H, and Meijer DKF: Mechanism of anti-HIV activity of negatively charged albumins: biomolecular interaction with the HIV-1 envelope protein gp120. J Acq Immun Defic Synd Hum R 1996; 11: 419–429.

    Article  CAS  Google Scholar 

  13. Purtell.IN, Pesce AJ, Clyne DH, Miller WC, and Pollak VE: Isoelectric point of albumin: Effect on renal handling of albumin. Kidney Int 1979; 16: 366–376.

    Article  Google Scholar 

  14. Miyoshi I, Taguchi H, Kubonishi I, Yoshimoto S, Ohtsuki Y, Shiraishi Y, and Akagi T: Type C virus-producing cell lines derived from adult T cell leukemia. Gann Monogr Cancer Res 1982; 28: 219–228.

    Google Scholar 

  15. Pauwels R, Balzarini J, Baba M, Snoeck R, Schols D, Herdewijn P, Desmyter J, and De Clercq E: Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J Virol Methods 1988; 20: 309–321.

    Article  PubMed  CAS  Google Scholar 

  16. Pless DP, and Lennarz WJ: Enzymatic conversion of proteins to glycoproteins. Proc Natl Acad Sci USA 1977: 74: 134–138.

    Article  PubMed  CAS  Google Scholar 

  17. Harmsen MC, Swart PJ, do Bethune M-P, Pauwels R, De Clercq E, The TH, and Meijer DKF: Antiviral effects of plasma and milk proteins: lactoferrin shows potent antiviral activity on both human immunodeficiency virus and human cytomegalovirus. J Infect Dis 1995; 172: 380–388.

    Article  PubMed  CAS  Google Scholar 

  18. Jansen RW, Schols D, Pauwels R, De Clercq E, and Meijer DKF: Novel, negatively charged, human serum albumins display potent and selective in vitro anti-human immunodeficiency virus type 1 activity. Mol Pharmacol 1993; 44: 1003–1007.

    PubMed  CAS  Google Scholar 

  19. Swart PJ, and Meijer DKF: Negatively-charged albumins: A novel class of polyanionic proteins with a potent anti-HIV activity. Antiviral News 1994; 2: 69–70.

    Google Scholar 

  20. Hasegawa K, Motsuchi W, Tanaka S, and Dosako S: Inhibition with Lactoferrin of In Vitro Infection with Human Herpes Virus. Jpn J Med Sci Biol 1994; 47: 73–85.

    PubMed  CAS  Google Scholar 

  21. Metz-Boutigue MH, Jollès J, Mazurier J, Schoentgen F, Legrand D, Spik G, Montreuil J, Jollès P: Human lactotransferrin: amino acid sequence and structural comparisons with other transferrins. Eur J Biochem 1984; 145: 659–676.

    Article  PubMed  CAS  Google Scholar 

  22. Day CL, Anderson BF, Tweedie JW, and Baker EN: Structure of the Recombinant N-Terminal Lobe of Human Lactoferrin at 2.0 A Resolution. J Mol Biol 1993; 232: 1084–1100.

    Article  PubMed  CAS  Google Scholar 

  23. Matthews THJ, Lawrence MK, Nair CDG, and Tyrrell DAJ: Antiviral acitivity in milk of possible clinical importance. Lancet 1976; 2: 1387–1389.

    Article  PubMed  CAS  Google Scholar 

  24. Gold P: Method of treatment of HIV-seropositive individuals with dietary whey proteins. 1994:1–18; PCT/CA93/00107 (Application number);WO 93/20831 (Patent number).

    Google Scholar 

  25. Mok J: HIV-1 Infection. Breast Milk and HIV-1 Transmission. Lancet 1993; 341: 930–931.

    Article  PubMed  CAS  Google Scholar 

  26. Newburg DS, Viscidi RP, Ruff A, and Yolken RH: A human milk factor inhibits binding of human immunodeficiency virus to the CD4 receptor. Pediatr Res 1992; 31: 22–28.

    Article  PubMed  CAS  Google Scholar 

  27. Lash JA, Coates TD. Lafuze J, Baehner RL, and Boxer LA: Plasma lactoferrin reflects granulocyte activation in vivo. Blood 1983;61:885–888.

    Google Scholar 

  28. Boyle MJ, Connors M, Flanigan ME, Geiger SP, Ford H, Baseler M, Adelsberger J, Davey RT, and Lane HC: The human HIV/peripheral blood lymphocyte (PBL)-SCID mouse — A modified human PBL-SCID model for the study of HIV pathogenesis and therapy. J Immunol 1995; 154: 6612–6623.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Swart, P.J., Kuipers, E.M., Smit, C., Van Der Strate, B.W.A., Harmsen, M.C., Meijer, D.K.F. (1998). Lactoferrin. In: Spik, G., Legrand, D., Mazurier, J., Pierce, A., Perraudin, JP. (eds) Advances in Lactoferrin Research. Advances in Experimental Medicine and Biology, vol 443. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9068-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9068-9_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9070-2

  • Online ISBN: 978-1-4757-9068-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics