Study | Number of SSNs | Predictors of malignancy or growth | OR in multivariate analysis |
---|---|---|---|
McWilliams et al46 | 1672 | Predictive models for all nodules including age, sex, size, spiculation, location, emphysema, family history of lung cancer | PSN 1.16 pGGN 0.86 |
Lee et al122 | 272 | CT features only; predictors of non-invasive disease: Size Solid proportion Non-lobulated border Non-spiculated border | 0.819 0.953 2.856 26.80 |
Ichinose et al104 | 191 | Pleural indentation PET SUVmax >0.8 | 2.64 (pGGN) 16.0 (pGGN) |
Oh et al114 | 186 | Female sex Spiculated border Eosinophilia (−ve) | |
Lee et al113 | 175 | Size ≥10 mm Solid component Age ≥65 years | 6.46 (2.69–15.6) 2.69 (1.11–6.95) 2.55 (1.13–5.77) |
Matsuguma et al103 | 174 (98 pGGN) | Size ≥10 mm History of lung cancer | pGGN only 13.7 4.03 |
Takahashi et al115 | 150 | Size ≥10 mm Lobulated margin Bubble-like | |
Attina et al117 | 146 | Age Smoking | |
Lee et al112 | 126 | Young age (−ve) Eosinophilia (−ve) Large solid portion (−ve) Multiplicity (−ve) Ill-defined border (−ve) | |
Hiramatsu et al106 | 125 | Initial size >10 mm History of lung cancer | 1.42 3.51 |
Kobayashi et al111 | 120 | Smoking Size 10 mm 11–30 mm | 6.51 (p<0.01) 1.0 4.06 |
PET, positron emission tomography; pGGN, pure ground-glass nodule; PSN, part-solid nodule; SSN, sub-solid nodule; SUV, standardised uptake value.