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Additional text 27 

Systematic selection of publicly available datasets 28 

We performed our systematic search in March 2020 to select the datasets that were suitable for inclusion in the 29 

study (Figure E1). We required multiple sets of transcriptomic data from independent cohorts. We searched the 30 

Gene Expression Omnibus (GEO) (1) for all collections that contained the term ‘IPF’, excluding any that did not 31 

contain human samples. We restricted the search to collections with at least 30 samples as this allowed for 32 

inclusion of the largest datasets with the most IPF cases and healthy control subjects, which are the datasets that 33 

were the most likely to successfully co-normalise due to the higher counts of healthy control subjects. We did not 34 

restrict the search by platform. Each of the remaining collections were then reviewed to assess whether they 35 

contained data for IPF cases. All collections that did not contain data for IPF subjects were excluded.  36 

For a successful co-normalisation and meaningful clustering results, we were required to choose an optimal 37 

tissue/cell type to use for the analysis. After reviewing the IPF datasets on GEO, we chose whole blood as our 38 

optimal tissue/cell type. There were three main reasons for this. Firstly, there were several relatively large whole 39 

blood datasets available on GEO and these would have provided the largest sample size and greatest statistical 40 

power for the study compared to other tissue types. Secondly, we required multiple datasets that contained data 41 

for healthy controls in addition to the IPF patients (so that the data could be co-normalised using COCONUT) and 42 

the whole blood datasets fulfilled this requirement. Thirdly, the accompanying clinical data for the whole blood 43 

datasets was far more comprehensive than for other tissue types, such as whole lung. This clinical data was vital 44 
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to the study as it was required for the characterisation of the clusters in both the discovery and validation stages.  1 

So, all GEO collections containing expression data measured from a non-blood tissue/cell type were excluded.  2 

As multiple transcriptomic datasets were to be combined, it was important to check for the presence of common 3 

individuals across cohorts, which would have meant that the cohorts were not independent and could have biased 4 

the results of the study. To this end, the subjects in each collection were checked for unique study identification 5 

codes. Using these, we found that two of the blood collections, GSE132607 (n=74) and GSE85268 (n=68), both 6 

contained subjects from the Correlating Outcomes With Biochemical Markers to Estimate Time-progression in 7 

Idiopathic Pulmonary Fibrosis (COMET) study (ClinicalTrials.gov identifier: NCT01071707). There were a large 8 

number of IPF subjects in common between the two cohorts (n=58) and so we excluded the GSE85268 dataset as 9 

it was the collection with fewer IPF subjects.  10 

The seven remaining collections of data were uploaded by research groups from across the USA (including the 11 

University of Virginia, Yale University, the University of Nevada and the University of Colorado) and the UK 12 

(Imperial College London). GSE27957 and GSE28042 were uploaded by the Kaminski Lab in Yale. These two 13 

collections were both used in the same study (2), where GSE27957 was used as discovery data and GSE28042 14 

was used as independent replication data. Similarly, the data found in GSE133298 and GSE132607 were uploaded 15 

by researchers at the University of Virginia and were used as independent cohorts in the same study (unpublished 16 

as of October 2020, both collections uploaded to GEO in September 2019). All remaining collections were 17 

uploaded by separate research groups and no additional evidence of common subjects across cohorts was found 18 

so the seven cohorts of IPF subjects were deemed independent. However, the possibility that subjects could be 19 

common in two or more studies cannot be ruled out. 20 

The human biological samples were sourced ethically and their research use was in accord with the terms of the 21 

informed consents under an institutional review board/ethical committee (IRB/EC)-approved protocol. 22 

Assignment of datasets to discovery and validation stages 23 

All cohorts included in the discovery stage must have contained healthy controls in order to enable the data co-24 

normalization step. Four of the seven selected blood datasets contained data for healthy controls. We used the 25 

three with the greatest number of controls in discovery as these were the most likely to successfully co-normalize. 26 

The four remaining datasets were reserved for use in the validation stage. One dataset (GSE133298) was excluded 27 

during the validation stage as not all of the genes that were required to fully apply the classifier were present in 28 

the dataset.  29 

Discovery stage studies 30 

GSE38958: This dataset originates from an American observational study (3) that was investigating the 31 

relationship between sphingosine-1-phosphate lyase and pulmonary fibrosis. IPF cases were recruited from the 32 

University of Chicago. The authors studied gene expression data from peripheral blood mononuclear cells of IPF 33 

subjects (n=70) and compared this to gene expression from healthy controls (n=45).  34 

GSE33566: This dataset contained data for 123 IPF subjects and 30 healthy controls. A subset of this data was 35 

used in an American observational study (4), where the authors hypothesised that a peripheral blood biomarker 36 

for IPF would be able to identify the disease in its early stages and allow for disease progression to be monitored. 37 

The IPF cases were recruited through the Interstitial Lung Disease or the Familial Pulmonary Fibrosis Programs 38 

conducted at National Jewish Health and Duke University. In the study, 40 IPF subjects were split into groups 39 

based on their predicted FVC and DLCO, then the authors looked for differentially expressed genes between groups.  40 

GSE93606: This dataset contained data from a British prospective cohort study (5) (n=57 IPF subjects and n=20 41 

healthy age, sex and smoking history matched controls) which had the objective of examining host-microbial 42 

interactions in IPF subjects over time. IPF cases were prospectively recruited from the Interstitial Lung Disease 43 

Unit at the Royal Brompton Hospital, London, within six months of their initial diagnosis. The study was approved 44 

by the local research ethics committee (reference numbers 10/H0720/12 and 12/LO/1034). In this study, gene 45 

expression data from peripheral blood and lung function measurements were collected at multiple time points. 46 

However, only baseline gene expression and lung function data was used in our study. IPF patient survival was 47 

also recorded up to a maximum follow-up time of 34 months. 48 

Validation stage studies 49 

GSE132607: This dataset originates from a study (unpublished as of March 2022) which aimed to develop a 50 

predictor of FVC progression by studying gene expression differences in 74 IPF subjects over time. The subjects 51 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Thorax

 doi: 10.1136/thoraxjnl-2021-218563–8.:10 2023;Thorax, et al. Kraven LM



3 

 

included in this analysis were participants in COMET-IPF (Correlating Outcomes with biochemical Markers to 1 

Estimate Time-progression in Idiopathic Pulmonary Fibrosis), a prospective, observational study correlating 2 

biomarkers with disease progression. All IPF cases had been recruited in to this study within four years of their 3 

initial IPF diagnosis.  4 

GSE27957 and GSE28042:  both datasets originate from the same study (6), where the data in GSE27957 (n=45 5 

IPF subjects) was used in discovery and the data in GSE28042 (n=75 IPF subjects) was used as independent 6 

validation data. Individuals with IPF from the GSE27957 dataset were recruited from the University of Chicago 7 

and the individuals with IPF from the GSE28042 dataset were recruited from the University of Pittsburgh. In 8 

brief, the authors used these cohorts to develop a 52-gene signature that had the ability to predict transplant-free 9 

survival in IPF subjects.  10 

Data pre-processing 11 

In each discovery dataset, probes that did not map to a gene were removed. In the instance where multiple probes 12 

mapped to the same gene, only the probe with the greatest mean expression was included in the analysis. Each 13 

dataset was then quantile normalised to reduce any technical differences between the gene probes within a study. 14 

Following this, each dataset was scaled so that all expression data was on the log2 scale and thus in a consistent 15 

form prior to co-normalisation. Genes were matched across studies based on their gene symbols. 16 

Data co-normalisation using COCONUT 17 

We used COmbat CO-Normalization Using conTrols (COCONUT) (7) (in R v4.0.0 and the ‘COCONUT’ 18 

package) to reduce the technical differences between the three discovery transcriptomic datasets, therefore 19 

enabling a cluster analysis to be performed on the pooled, co-normalized data. COCONUT is an unbiased co-20 

normalisation method which assumes that all healthy controls across studies come from the same statistical 21 

distribution. It uses the healthy controls in each study to calculate correction factors that remove the technical 22 

differences in the data for the diseased subjects, without bias to the number of disease cases present. The method 23 

is adapted from the ComBat empiric Bayes normalization method (8), which is often used to adjust for batch 24 

effects within a study.  25 

As COCONUT makes the assumption that all healthy controls come from the same background statistical 26 

distribution, we tested for significant differences in clinical and demographic traits between the healthy controls 27 

in each study, where possible. Clinical and demographic characteristics of the healthy controls were compared 28 

using chi-square tests for count data and analysis of variance for non-skewed continuous data.  29 

Data for each study was input into COCONUT by providing a gene expression matrix (on the log2 scale) of 30 

common genes against subjects. These were accompanied by an indicator variable that showed which subjects 31 

were cases and which were controls. Following the co-normalisation, we removed all healthy control subjects 32 

from further analysis. Plots of the first two principal components of the transcriptomic data before and after 33 

COCONUT were used to evaluate the efficacy of the co-normalisation.  34 

Clustering using COMMUNAL  35 

In this study, we ran COMMUNAL using consensus clustering versions of two algorithms, K-means clustering 36 

and partitioning around medoids (PAM). Five different metrics were used to assess the validity of the clustering 37 

for different numbers of clusters and genes. These were: the gap statistic, connectivity, average silhouette width, 38 

the G3 metric, and Pearson’s gamma coefficient. We ranked the genes in order of variance, with the ‘top’ 100 39 

genes referring to the 100 genes with the greatest variance. We then applied the COMMUNAL algorithm using a 40 

range of input genes from the top 100 to the top 5,000. The genes with the greatest variance were used as these 41 

were the most likely to be informative, so as to minimise the number of non-informative genes and increase the 42 

signal-to-noise ratio.  43 

The samples that were not assigned into the same cluster by the COMMUNAL clustering algorithms were labelled 44 

‘unclustered’. Since the intention was to use the clustered data to create a classifier and classifiers trained on data 45 

with fewer errors are more robust, these uncertain samples were removed from further analysis to improve the 46 

accuracy of the classifier. 47 

The results were visualised in the form of a 3-dimensional (3D) map (Figure E2), which we used to select the 48 

optimal number of clusters in the data, as well as the optimal number of genes to use in the clustering. The map 49 

shows the mean of standardized values of each validity measure across the entire tested space. On the 3D map, 50 

blue squares indicate a potentially optimal clustering at a certain number of genes by finding the assignment where 51 
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the mean combined validation metric is greatest. The absolute maximum number of clusters for any consensus 1 

subset is marked with a red square. The points where the blue and red squares overlap indicate stable optima. If 2 

stable optima at a particular number of clusters are observed over most of the tested space, this indicates the 3 

presence of a strong, consistent biological signal at this number of clusters.  4 

In Figure E2 there are stable optima at K=4 from 250 genes to 1,000 genes, and at K=3 from 2,500 genes to 5,000 5 

genes, as shown by the red and blue squares meeting. Despite the K=4 clustering assignment at 1,000 genes 6 

showing the highest mean standardized validity score of all tested clustering assignments, there were stable optima 7 

at K=3 clusters over a larger range of tested space, indicating a stronger biological signal. As such, K=3 was 8 

chosen as the optimal number of clusters in the pooled IPF dataset. The clustering at 2,500 genes and 3 clusters 9 

was chosen as the optimal clustering assignment, under the assumption that the assignment with the fewest number 10 

of genes (out of those with stable optima at K=3) has the least amount of redundant signal. 11 

Comparison of phenotypic traits across clusters 12 

We characterised the clusters by comparing the clinical and demographic traits of the subjects that were assigned 13 

to each cluster. This was done for each phenotypic trait that was reported in at least one discovery cohort and one 14 

validation cohort. The statistical significance of the phenotypic differences across clusters was evaluated for all 15 

studies combined using a chi-square test for count data, an analysis of variance to compare means for non-skewed 16 

continuous data and a Kruskal-Wallis rank sum test to compare medians for skewed continuous data. For traits in 17 

the form of time-to-event data, Kaplan-Meier plots were used to approximate and visualise the survival function 18 

for these variables. Further, Cox proportional-hazards (PH) models were fit with cluster as the sole independent 19 

variable and the time to the event as the response variable.  20 

Gene enrichment analysis 21 

First, we assigned each of the 2,500 genes used in the optimal COMMUNAL clustering assignment to the cluster 22 

in which its expression was most different to its expression in the other two clusters, as this suggests that that gene 23 

was contributing to the identity of that cluster. 814 genes were assigned to Cluster 1, 866 were assigned to Cluster 24 

2 and 820 were assigned to Cluster 3.  25 

We then performed multiple ANOVA tests (one for each cluster) for each gene, each comparing the expression 26 

of that gene in subjects within a given cluster against the expression of subjects in both other clusters. Each gene 27 

was then assigned to the cluster in which it had the lowest ANOVA p-value. One benefit of this approach is that 28 

the ANOVA tests allowed for filtering based on statistical significance; a nominal p-value significance threshold 29 

of 0.05 was introduced and genes whose lowest ANOVA p-value was greater than this threshold were removed. 30 

The rationale for the introduction of this filtering step was that removing genes that were not associated with any 31 

cluster would reduce noise and strengthen the gene enrichment analysis for each cluster. The threshold for 32 

statistical significance was kept at a nominal level as a correction for all 7,500 ANOVA tests would have likely 33 

left too few genes assigned to each cluster to successfully perform the enrichment analysis. After the removal of 34 

the genes that were not at least nominally associated to any cluster, there were 769 genes assigned to Cluster 1, 35 

839 assigned to Cluster 2 and 784 assigned to Cluster 3.  36 

Then, gene enrichment analysis was performed separately on the three resulting gene lists using R v.4.0.0 and the 37 

in-house package ‘metabaser’ (database v20.3, package v4.2.3). This was used to search databases of gene 38 

ontology terms for statistically overrepresented biological processes and biological pathways. At the time that the 39 

analysis was performed, there were 17,552 biological processes and 12,222 biological pathways in the database 40 

accessed by metabaser. metabaser reports ‘q-values’, which are p-values that have been adjusted for multiple tests 41 

using the false-discovery rate. Gene ontology terms with q-value < 0.05 were deemed statistically significant. 42 

Sankey plots were used to show which of the genes that were assigned to each cluster corresponded to the 20 most 43 

significantly enriched biological pathways (see Figure 3). 44 

Additionally, the gene lists of each cluster were searched for the presence of the nearest gene for any of the 14 45 

variants that were genome-wide significant in Allen et al. (9), the largest genome-wide association study meta-46 

analysis of IPF susceptibility to-date. The 14 genes were as follows: AKAP13, ATP11A, DEPTOR, DPP9, DSP, 47 

FAM13A, LRRC34, IVD, KIF15, MAD1L1, MAPT, MUC5B, TERC and TERT. Following this, enrichment 48 

analysis was performed on the genes of each cluster to investigate whether those genes were statistically 49 

overconnected (in terms of direct gene regulation) to any of the IPF-associated genes from Allen et al. (2020).  If 50 

the genes that were assigned to a particular cluster were found to be overconnected to one or more of the IPF-51 

associated genes listed above (say the exact number of overconnected IPF-associated genes is N), then a 52 
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hypergeometric test was performed to approximate the statistical significance of the finding that N out of the 14 1 

IPF-associated genes were present within the list of overconnected genes for that cluster.  2 

None of the 14 suspected IPF susceptibility genes from Allen et al. were assigned to Cluster 1, nor were they 3 

statistically overconnected to the genes that were assigned to this cluster. FAM13A was one of the genes that was 4 

assigned to Cluster 2, though it did not belong to any of the top 20 significantly enriched biological pathways. 5 

Additionally, the genes in Cluster 2 were statistically overconnected to five other IPF-associated genes. These 6 

were: AKAP13, DSP, LRRC34, MAPT and TERT. The hypergeometric p-value was calculated to be 0.020, 7 

indicating that it is significant that five IPF-associated genes were overconnected to the genes Cluster 2 and this 8 

is more than would be expected due to random chance. None of the IPF-associated genes from Allen et al. were 9 

found in the gene list for Cluster 3, although four were found to be statistically overconnected to the genes in this 10 

cluster. These were as follows: DSP, MAD1L1, MAPT and TERT. The statistical significance of this was 11 

approximated to be P=0.008 using a hypergeometric test, again indicating that this was significantly more than 12 

would be expected under random chance. 13 

Developing the gene expression-based cluster classifier 14 

Classification is a method of supervised machine learning that uses a correctly labelled training dataset to predict 15 

which category new observations belong in. 16 

To determine the optimal genes to include in the classifier for the IPF data, we used an iterative algorithm which 17 

performed a greedy forward search for each cluster separately to determine the optimal combination of genes to 18 

differentiate between subjects in that cluster vs all other clusters. This was done by calculating receiver operating 19 

characteristic curves for each combination of genes and selecting the combination of genes which maximised the 20 

area under the curve (AUC). In an effort to prevent the classifier from being overfit to the discovery data, a 21 

threshold was implemented to stop the algorithm once an AUC of 0.99 had been reached. Each gene was labelled 22 

as either overexpressed or underexpressed based on whether the average expression of that gene was greater in 23 

the subjects from that particular cluster compared to the average expression across all subjects.  24 

Making predictions with the classifier was a two-stage process. First, each subject was given a classification score 25 

for each cluster. This score was calculated as the geometric mean of the overexpressed genes for that cluster minus 26 

the geometric mean of the underexpressed genes. These scores were mean centred around zero and scaled to 27 

reflect a Z-score (i.e. standard deviation equal to 1). Ideally, subjects that belonged to a certain cluster should have 28 

had a high classification Z-score for that cluster and low classification Z-scores for the other clusters.  29 

Then, we used the classification Z-scores to fit a multinomial logistic regression model, with cluster as the 30 

independent categorical variable and the Z-scores from each cluster as the dependent variables. This model had 31 

the ability to take data from new IPF subjects and predict which cluster they were each most likely to belong in, 32 

using only expression data from the optimal genes in the classifier. Importantly, the classifier does not use absolute 33 

levels of gene expression in order to make predictions, but instead utilizes relative gene expression between 34 

subjects. This meant that the classifier could be applied to a cohort of IPF cases (from the same study) without 35 

first requiring the removal of technical effects, which allowed for the use of validation datasets that did not contain 36 

data for healthy controls. 37 

We tested the prediction accuracy of the classifier by using it to reassign all of the IPF subjects in the discovery 38 

datasets. 39 

Risk classification using the classifier 40 

Each of the IPF subjects in the two validation studies for which survival data was available, GSE27957 (n=45) 41 

and GSE28042 (n=75), were assigned into one of the three clusters using the 13 gene classifier. As significant 42 

differences in survival were observed between clusters 1 and 2 and 2 and 3, but not between clusters 1 and 3 43 

(Table E9), we used assignment to clusters 1 and 3 to define high risk individuals and assignment to cluster 2 as 44 

low risk.  45 

Risk classification using SAMS 46 

Each of these individuals were also classed as high-risk or low-risk using SAMS (2). 7 of the 52 genes used by 47 

SAMS were expected to be more highly expressed in high risk cases than low risk cases (‘up genes’). Likewise, 48 

the remaining 45 genes were expected to be less highly expressed in high risk cases than low risk cases (‘down’ 49 

genes). The method that SAMS used to predict risk is as follows: 50 
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1. For each gene, the geometric mean of the expression for that gene across all subjects was calculated. 1 

This value represents the average level of expression for that gene across the whole cohort. It was then 2 

subtracted from the gene expression of that gene for each subject so that positive values represented 3 

subjects that had increased expression of that gene compared to the average and negative values 4 

represented subjects that had decreased expression compared to the average.  5 

2. For each subject, the proportion of the 7 ‘up genes’ that were overexpressed was calculated. Similarly, 6 

the proportion of the 45 ‘down genes’ that were less highly expressed than average was calculated. So, 7 

if a subject had 4 ‘up genes’ that were greater than the average and 30 ‘down genes’ that were lower than 8 

the average, these proportions would have been 0.571 and 0.667 respectively. 9 

3. For each subject, the sum of the geometric mean normalised expression data was summed up for the ‘up 10 

genes’ that were more highly expressed than average. Then the sum of the geometric mean normalised 11 

expression data was summed up for the ‘down genes’ that were less highly expressed than average. So, 12 

for example, for the subject above who had 4 of the 7 ‘up genes’ that were more highly expressed than 13 

the average, say with expression values 0.185, 0.553, 0.123 and 1.003 for these four genes, the sum 14 

would have been 1.864. The sum for the ‘down genes’ must always be negative, for example say that 15 

this sum for the subject above was -7.645.   16 

4. The proportion of the ‘up genes’ calculated in step 2 was multiplied by the sum for the ‘up genes’ 17 

calculated in step 3 to produce the ‘up score’ for each subject. So, for the example subject above, their 18 

up score would have been 0.571×1.864 = 1.064. A ‘down score’ for each subject was also calculated by 19 

multiplying their proportion of down genes by their down sum from step 3. For our example subject, this 20 

would have been 0.667× -7.645=-5.099.  21 

5. Subjects with up scores greater than the median value and down scores lower than the median value were 22 

classed as ‘high risk’, while all other subjects were classed as ‘low risk’.  23 

This was done separately for each cohort and by using data from as many of the 52 genes as were measured in the 24 

datasets; 51/52 (98·1%) genes in the SAMS signature were present in GSE27957 and 50/52 (96·2%) were present 25 

in GSE28042. Two-way tables were used to compare agreement between the two methods. 26 

Comparing prognostic methods using survival analysis  27 

Kaplan-Meier plots were used to visualise the survival over time for the validation subjects in each risk group 28 

under each method. In both cases, the log-rank test was used to test the survival curves of each risk group for 29 

equality. Univariate Cox proportional-hazards models were fit to the data with risk group as the sole covariate and 30 

time-to-death as the outcome of interest. In both cases, the low-risk group was used as the reference group. The 31 

Concordance index (C-index), the equivalent of the area under the curve (AUC) for a receiver operating 32 

characteristic (ROC) curve, and the p-values from the log-rank test were used to assess which method performed 33 

best at assigning the IPF subjects to the correct risk group and therefore predicting survival.  34 

Following this, multivariate Cox proportional-hazards models were used to assess whether the predictions made 35 

by each method were significant predictors of mortality in the validation datasets whilst adjusting for age, sex, 36 

ancestry, FVC and DLCO. We used the likelihood ratio test and C-index to assess whether either of the two methods 37 

of risk prediction led to a significant increase in predictive ability over a Cox PH model containing only age, sex, 38 

ancestry, FVC and DLCO.  39 

 40 

 41 

 42 

 43 

 44 
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1 

Additional Tables 2 

TABLE E1: Information about the transcriptomic data in the discovery datasets and the platform used in each 

study.  

GEO accession GSE38958 GSE33566 GSE93606 

Microarray platform Affymetrix Human 

Exon 1.0 ST Array  

Agilent-014850 Whole Human 

Genome Microarray 

Affymetrix Human 

Gene 1.1 ST Array 

Number of gene probes 44,280 32,850 33,297 

Number of unique genes 17,256 12,171 20,254 

 3 

 4 

TABLE E2: Comparison of the age and sex of the healthy controls in each discovery stage study. Data are 

presented as count (percentage) or mean (standard deviation, SD). P-value for count data is from a chi-square 

test and the test comparing means is analysis of variance. 

 GSE38958 GSE33566 GSE93606 P-value n used 

Number of healthy controls 45 30 20   

Age (years, SD) 69·3 (9·3) 62·4 (14·3) 66·0 (10·6) 0.187 83 

Sex (% male) 27 (60·0%) 14 (46·7%) 12 (60·0%) 0.477 95 

 5 

 6 
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TABLE E3: Comparison of clinical and demographic traits of clustered discovery subjects by study and for all studies combined. Data are presented as count (percentage), 

mean (standard deviation, SD) or median (interquartile range, IQR). NA = data not available, FVC=Forced vital capacity, DLCO = Diffusing capacity for carbon monoxide, 

FEV1 = Forced expiratory volume in one second, CPI = composite physiologic index, MUC5B genotype = genotype for the MUC5B promoter polymorphism rs35705950.  

- indicates that the calculation was not applicable as there were zero subjects in that cluster. P-value for count data is from a chi-square test, test comparing means is analysis 

of variance and test comparing medians is the Kruskal-Wallis log rank test. Significant P-values (P < 0·05) are highlighted in bold.  

 GSE38958 (n=65) GSE33566 (n=83) GSE93606 (n=48) All studies combined (n=196) 
 

Cluster  

1 

Cluster 

2 

Cluster 

3 

Cluster  

1 

Cluster 

2 

Cluster  

3 

Cluster  

1 

Cluster 

2 

Cluster 

3 

Cluster  

1 

Cluster 

2 

Cluster 

3 

P-

value 

Total 

n used 

n subjects in cluster 22 39 4 42 32 9 0 24 24 64 95 37   

Age (years)  

(mean, SD) 

70·0 

(6·3) 

68·3 

(7·9) 

64·0 

(2·7) 

66·7 

(9·8) 

67·0 

(14·1) 

67·0 

(12·1) 
- 

64·8 

(5·9) 

70·3 

(8·8) 

67·8 

(8·9) 

66·9 

(10·2) 

68·8 

(9·4) 
0·592 188 

Male  

(%) 

20 

(91·0%) 

30 

(77·0%) 

4  

(100%) 

32 

(76·2%) 

21 

(65·6%) 

3 

(33·3%) 
- 

15 

(62·5%) 

16 

(66·7%) 

52 

(81·3%) 

66 

(69·5%) 

23 

(62·2%) 
0·091 196 

European ancestry 

(%) 

17 

(81·0%) 

29 

(82·9%) 

3 

(75·0%) 
NA NA NA - NA NA 

17 

(81·0%) 

29 

(82·9%) 

3 

(75·0%) 
0·883 60 

Ever smoker  

(%) 
NA NA NA NA NA NA - 

15 

(62·5%) 

18 

(78·3%) 
NA 

15 

(62·5%) 

18 

(78·3%) 
0·389 47 

Death observed 

during study (%) 
NA NA NA NA NA NA - 

6 

(25·0%) 

16 

(66·7%) 
NA 

6 

(25·0%) 

16 

(66.7%) 
0·009 48 

FVC % predicted 

(median, IQR) 

59·5 

(19·5) 

65·0 

(24·0) 

51·5 

(7·8) 

77·0 

(36·0) 

66·0 

(46·0) 

73·0 

(17·5) 
- 

71·5 

(27·7) 

60·8 

(24·1) 

63.0 

(35·0) 

70·5 

(30·1) 

60·1 

(23·4) 
0·342 154 

DLCO % predicted 

(median, IQR) 

34·5 

(17·5) 

49·0 

(21·0) 

28·5 

(21·0) 

65·0 

(37·0) 

66·0 

(40·0) 

30·0 

(30·0) 
- 

38·1 

(17·1) 

36·6 

(15·9) 

35·0  

(30·0) 

45·0 

(29·2) 

34·4 

(17·3) 
0·009 133 

FEV1 % predicted 

(median, IQR) 
NA NA NA NA NA NA - 

74·9 

(23·1) 

65·4 

(22·7) 
NA 

74·9 

(23·1) 

65·4 

(22·7) 
0·216 48 

GAP index 

(mean, SD) 

5·3  

(1·3) 

3·9 

(1·3) 

4·5 

(1·3) 

4·3 

(1·5) 

4·1 

(1·6) 

4·3 

(3·1) 
- 

3·7 

(1·8) 

4·4 

(1·6) 

4·9 

(1·4) 

3·9 

(1·5) 

4·4 

(1·7) 
0·006 132 

MUC5B genotype:   

GG (%) 
NA NA NA 

5 

(29·4%) 

6 

(28·6%) 

3 

(60·0%) 
- 

5 

(26·3%) 

11 

(50·0%) 

5 

(29·4%) 

11 

(27·5%) 

14 

(51·9%) 
0·230 84 

MUC5B genotype:  

GT (%) 
NA NA NA 

10 

(58·8%) 

14 

(66·7%) 

2 

(40·0%) 
- 

12 

(63·2%) 

8 

(36·4%) 

10 

(58·8%) 

26 

(65·0%) 

10 

(37·0%) 
  

MUC5B genotype:   

TT (%) 
NA NA NA 

2 

(11·8%) 

1 

(4·8%) 

0 

(0%) 
- 

2 

(10·5%) 

3 

(13·6%) 

2 

(11·8%) 

3 

(7·5%) 

3 

(11·1%) 
  

1 
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 1 

TABLE E4: The significantly enriched (q-value <0.05) biological processes for the 769 genes assigned to 

Cluster 1. 

Biological process 
Enrichment 

score 
p-value q-value 

Mitochondrial ATP synthesis coupled electron transport 7.18 1.0×10-7 7.8×10-4 

ATP synthesis coupled electron transport 7.12 1.2×10-7 7.8×10-4 

Respiratory electron transport chain 6.88 1.4×10-7 7.8×10-4 

Cellular respiration 5.95 1.3×10-6 0.005 

Oxidative phosphorylation 5.84 4.0×10-6 0.012 
Electron transport chain 5.56 4.3×10-6 0.012 

Homeostasis of number of cells 5.12 1.1×10-5 0.024 

Homeostatic process 4.54 1.7×10-5 0.032 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

TABLE E5: The 20 most significantly enriched (q-value <0.05) biological processes for the 839 genes 
assigned to Cluster 2.  

Biological process Enrichment score p-value q-value 

Cell activation 12.78 2.2×10-27 3.7×10-24 

Immune system process 11.33 1.7×10-25 1.4×10-21 

Leukocyte activation 11.76 2.4×10-23 1.2×10-19 

Immune response 9.83 6.0×10-19 2.5×10-15 

Regulation of immune system process 9.75 1.5×10-18 4.9×10-15 

Regulated exocytosis 8.90 2.5×10-14 6.9×10-11 

Response to stimulus 7.30 1.3×10-13 3.1×10-10 

Defence response 8.16 1.6×10-13 3.2×10-10 

Multi-organism process 7.74 1.9×10-13 3.5×10-10 

Lymphocyte activation 8.73 4.5×10-13 7.5×10-10 

Translational initiation 9.72 6.4×10-13 9.1×10-10 

Symbiotic process 8.24 6.6×10-13 9.1×10-10 

Interspecies interaction between organisms 8.02 1.6×10-12 2.1×10-9 

Peptide metabolic process 8.31 1.9×10-12 2.1×10-9 

Exocytosis 8.06 1.9×10-12 2.1×10-9 

Peptide biosynthetic process 8.43 2.9×10-12 2.9×10-9 

Translation 8.46 3.2×10-12 3.1×10-9 

Regulation of biological quality 7.14 3.8×10-12 3.5×10-9 

Myeloid leukocyte activation 8.09 4.1×10-12 3.6×10-9 

Regulation of multicellular organismal process 7.20 5.0×10-12 4.0×10-9 
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TABLE E6: The 20 most significantly enriched (q-value <0.05) biological processes for the 784 genes 

assigned to Cluster 3. 

Biological process 
Enrichment 

score 
p-value q-value 

Cell activation 20.78 1.3×10-60 1.5×10-56 

Immune response 19.53 1.8×10-60 1.5×10-56 

Leukocyte activation 20.87 3.3×10-59 1.8×10-55 

Immune system process 18.04 1.6×10-57 6.6×10-54 

Immune effector process 19.19 1.2×10-52 4.0×10-49 

Myeloid leukocyte activation 20.63 1.7×10-52 4.7×10-49 

Leukocyte activation involved in immune response 20.07 9.2×10-51 2.2×10-47 

Cell activation involved in immune response  19.98 1.9×10-50 3.9×10-47 
Neutrophil activation 20.19 1.0×10-48 1.9×10-45 

Granulocyte activation 20.02 3.5×10-48 5.7×10-45 

Neutrophil activation involved in immune response 19.55 4.0×10-46 6.1×10-43 

Leukocyte degranulation 19.42 5.0×10-46 6.8×10-43 

Neutrophil degranulation 19.43 1.3×10-45 1.7×10-42 

Myeloid cell activation involved in immune response 19.21 1.5×10-45 1.8×10-42 

Neutrophil mediated immunity 19.23 3.6×10-45 3.9×10-42 

Myeloid leukocyte mediated immunity 18.99 1.1×10-44 1.1×10-41 

Leukocyte mediated immunity 17.11 4.3×10-43 4.2×10-40 

Secretion by cell 16.63 3.9×10-41 3.5×10-38 

Export from cell 16.50 5.9×10-41 5.2×10-38 

Defence response 15.95 1.2×10-40 1.0×10-37 

 1 

2 

TABLE E7: The 13 genes in the classifier. ‘Up genes’ refer to genes that were more highly expressed in the 
subjects for that cluster compared to the mean expression across all subjects, and ‘down genes’ refer to genes 
that were less highly expressed in the subjects in that cluster.  

Cluster 1  Cluster 2 Cluster 3  

Up genes Down genes Up genes Down genes Up genes Down genes 

KCNK15 RPF1 NOP58 
 

CA4 
 

SORBS1 
 

PSMA5 
 

BCL2A1 
 

HBB 
 

RASGRP1 
 

UGCG 
 

  
IFI30 

   

  
HLA-DRA 

   

  
ATM 

   

TABLE E8:  Coefficients of the multinomial logistic regression model fit using classification scores 

from the genes in the classifier. Note that Cluster 1 is the reference cluster and so the coefficients for 

this cluster are all zero and have been omitted. 

 Cluster Intercept Cluster 1 score Cluster 2 score Cluster 3 score 

2 3.12 -9.75 8.87 1.66 

3 -16.6 -11.92 -3.15 29.42 
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 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

TABLE E10: Pairwise comparisons showing the differences in survival over 

time between any two validation clusters, estimated using Cox proportional 

hazards models. 

Reference 

cluster 

Alternate 

cluster 

Hazard 

Ratio 
95% CI P-value 

Cluster 2 Cluster 1 3.80 1.78, 8.12 0.001 

Cluster 2 Cluster 3 5.05 2.24, 11.35 9.1×10-5 

Cluster 1 Cluster 3 1.47 0.67, 3.22 0.341 

 9 

 10 

TABLE E11: The agreement between the cluster classifier and 

SAMS when validation subjects were assigned to risk groups 

using each method.  

GSE27957 (n=45) 
Cluster classifier 

High risk Low risk 

SAMS 
High risk 13 2 

Low risk 5 25 

GSE28042 (n=75) 
Cluster classifier 

High risk Low risk 

SAMS 
High risk 17 12 

Low risk 19 27 

Both datasets combined 

(n=120) 

Cluster classifier 

High risk Low risk 

SAMS 
High risk 30 14 

Low risk 24 52 

 11 

 12 

 13 

 14 

 15 

TABLE E9: Two-way tables comparing ‘true’ assignment of subjects from the 
discovery analysis (determined using COMMUNAL with 2,500 genes) to the 

reassignment of these subjects using the 13-gene cluster classifier. 

  
True cluster 

Cluster 1 Cluster 2 Cluster 3 

Classifier 

predicted 

cluster 

Cluster 1  63 1 0 

 Cluster 2 1 94 0 

Cluster3  0 0 37 
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TABLE E12: Summary statistics from the Cox proportional hazards model adjusting for 

cluster, age, sex, ancestry, predicted forced vital capacity (FVC) and predicted diffusing 

capacity of the lung for carbon monoxide (DLCO). OR = odds ratio, SE = standard error 

and CI = confidence interval.  

Variable OR SE P-value 95% CI  

Cluster (high-risk cluster) 2.697 0.367 0.007 (1.315, 5.534) 

Age (years) 1.006 0.020 0.748 (0.968, 1.046) 

Sex (male) 5.720 0.752 0.020 (1.310, 24.969) 

Ancestry (non-European) 1.099 0.608 0.876 (0.334, 3.619) 

Predicted FVC 0.996 0.013 0.745 (0.971, 1.022) 

Predicted DLCO 0.967 0.013 0.008 (0.944, 0.991) 

 1 

 2 

 3 

 4 

 5 

Additional Figures  6 

 7 

 

FIGURE E1: Flow diagram showing the process used to systematically select publicly available IPF gene 

expression datasets from the Gene Expression Omnibus for use in this study. 

 8 
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 1 

Cluster 1 Cluster 2 Cluster 3 

FIGURE E3: Heatmaps of gene expression for the clustered samples (x-axis) across the top 2,500 genes (y-

axis), without hierarchical clustering of the samples (A) and with hierarchical clustering of the samples (B). 

Blue inside the heatmap indicates low expression and red indicates high expression. In both plots, the genes 

have been hierarchically clustered for presentation purposes, the bar above the plot shows the cluster that 

subject was assigned in to (red = cluster 1, blue = cluster 2 and yellow = cluster 3) and the bar below the plot 

indicates which original study the subject was in (red = GSE38958, green = GSE33566 and blue = GSE93606). 
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 1 

FIGURE E4: Kaplan-Meier curves and corresponding 95% confidence intervals showing survival over time for 2 

the subjects from study GSE93606, stratified by the cluster which they were assigned to in this study. The p-value 3 

shown on the plot is from a log-rank test testing the two curves for equality. 4 
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FIGURE E5: A Sankey diagram for Cluster 1 showing the genes that correspond to the 20 most significantly enriched biological pathways. The colour on the right hand 

side of the plot indicates the category of a particular pathway.  
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FIGURE E6: A Sankey diagram for Cluster 2 showing the genes that correspond to the 20 most significantly enriched biological pathways. The colour on the right 

hand side of the plot indicates the category of a particular pathway. 
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FIGURE E8: A heatmap showing the Pearson correlation between the genes in the classifier (y-axis) and the genes used by SAMS (x-axis). The correlation was calculated 

using the data from the IPF patients in the three validation cohorts (total n=194) for all genes that had complete data (12/13 genes for the classifier and 49/52 genes for 
SAMS). Both sets of genes were clustered using hierarchical clustering for presentation purposes.  

 

 1 

 2 
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FIGURE E9: Survival over time for the IPF subjects in the validation datasets GSE27957 and 6 

GSE28042, stratified by predicted risk group. A) Survival of IPF cases from GSE27957 with risk 7 

predicted by our 13 gene classifier. B) Survival of IPF cases from GSE27957 with risk predicted by 8 

SAMS. C) Survival of IPF cases from GSE28042 with risk predicted by our 13 gene classifier. D) 9 

Survival of IPF cases from GSE28042 with risk predicted by SAMS. The P-value on each plot is from 10 

a log-rank test testing the two curves for equality. A dotted line on the plot indicates the median survival 11 

time for the risk group if this could be calculated. 12 

A B 

C D 
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