PT - JOURNAL ARTICLE AU - Irene H Heijink AU - Harold G de Bruin AU - Maarten van den Berge AU - Lisa J C Bennink AU - Simone M Brandenburg AU - Reinoud Gosens AU - Antoon J van Oosterhout AU - Dirkje S Postma TI - Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease AID - 10.1136/thoraxjnl-2012-201667 DP - 2013 Aug 01 TA - Thorax PG - 709--716 VI - 68 IP - 8 4099 - http://thorax.bmj.com/content/68/8/709.short 4100 - http://thorax.bmj.com/content/68/8/709.full SO - Thorax2013 Aug 01; 68 AB - Background WNT signalling is activated during lung tissue damage and inflammation. We investigated whether lung epithelial expression of WNT ligands, receptors (frizzled; FZD) or target genes is dysregulated on cigarette smoking and/or in chronic obstructive pulmonary disease (COPD). Methods We studied this in human lung epithelial cell lines and primary bronchial epithelial cells (PBEC) from COPD patients and control (non-)smokers, at baseline and on cigarette smoke extract (CSE) exposure. Results CSE significantly decreased WNT-4, WNT-10B and FZD2 and increased WNT-5B mRNA expression in 16HBE, but did not affect WNT-4 protein. The mRNA expression of WNT-4, but not other WNT ligands, was lower in PBEC from smokers than non-smokers and downregulated by CSE in PBEC from all groups, yet higher in PBEC from COPD patients than control smokers. Moreover, PBEC from COPD patients displayed higher WNT-4 protein expression than both smokers and non-smokers. Exogenously added WNT-4 significantly increased CXCL8/IL-8, IL-6, CCL5/RANTES, CCL2/MCP-1 and vascular endothelial growth factor (VEGF) secretion in 16HBE, but did not affect the canonical WNT target genes MMP-2, MMP-9, fibronectin, β-catenin, Dickkopf and axin-2, and induced activation of the non-canonical signalling molecule p38. Moreover, WNT-4 potentiated the CSE-induced upregulation of IL-8 and VEGF. Conclusions WNT-4 mRNA and protein levels are higher in PBEC from COPD patients than control (non-)smokers, while cigarette smoke downregulates airway epithelial WNT-4 mRNA, but not protein expression. As WNT-4 further increases CSE-induced pro-inflammatory cytokine release in bronchial epithelium, we propose that higher epithelial WNT-4 levels in combination with cigarette smoking may have important implications for the development of airway inflammation in COPD.